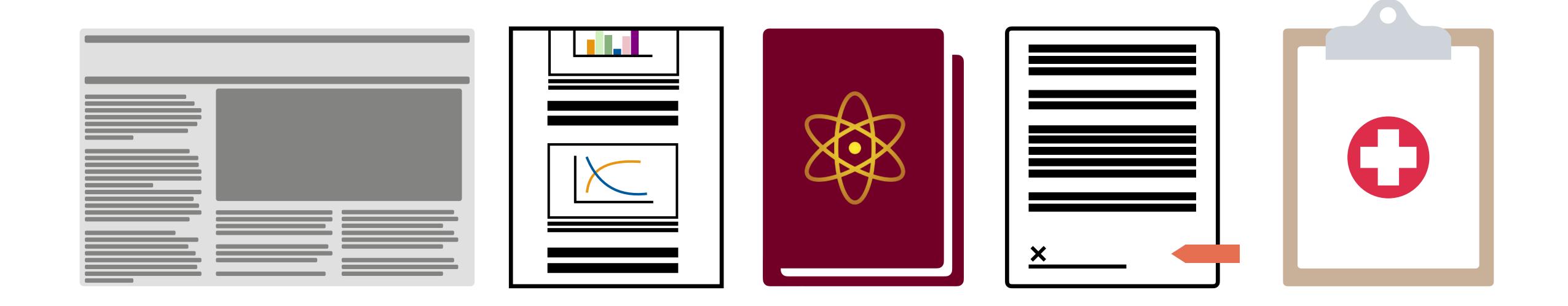
User Interfaces for Fine-grained Integration of Information

Dissertation Defense • Wednesday, November 26, 2025 Committee: Anindya De (Chair), Susan Davidson, Insup Lee, Yale Cohen (PSOM)

Alyssa Hwang

Knowledge is shared through (complex) documents.



Knowledge is shared through (complex) documents.

Knowledge is shared through (complex) documents.

Research questions

- 1. What **challenges** do users face when synthesizing ideas within complex documents?
- 2. How can we systematically **represent** connections between ideas to make them easier to find?
- 3. Does surfacing these connections measurably **improve** comprehension?

Thesis statement: exposing connections between related details in complex documents can improve comprehension without penalizing time or cognitive load.

Presentation structure

- 1. Needs-finding study
- 2. Framework design
- 3. Instantiation
- 4. Evaluation
- 5. Findings

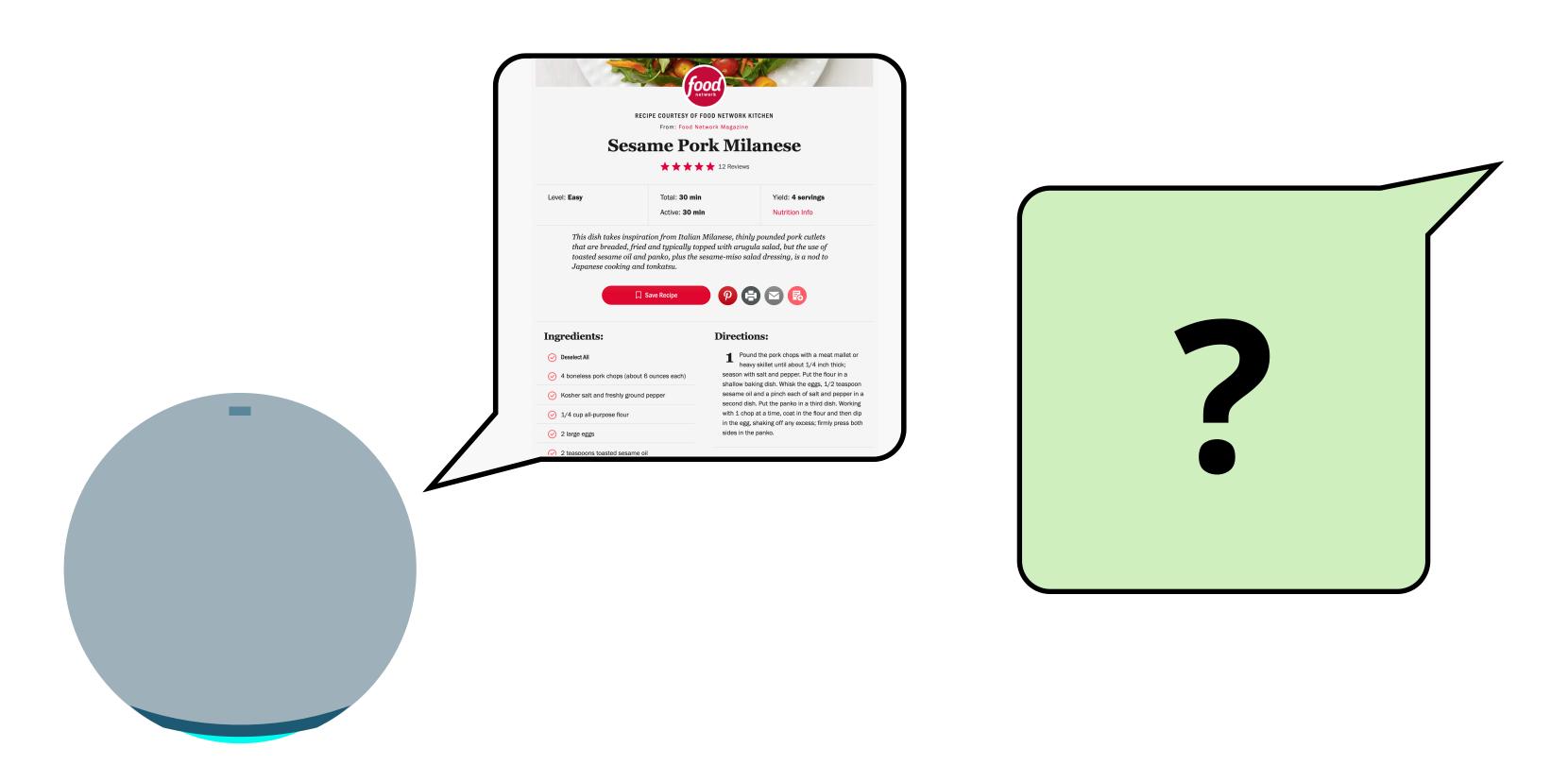
Presentation structure

- 1. Needs-finding study
- 2. Framework design
- 3. Instantiation
- 4. Evaluation
- 5. Findings

1. Needs-finding study

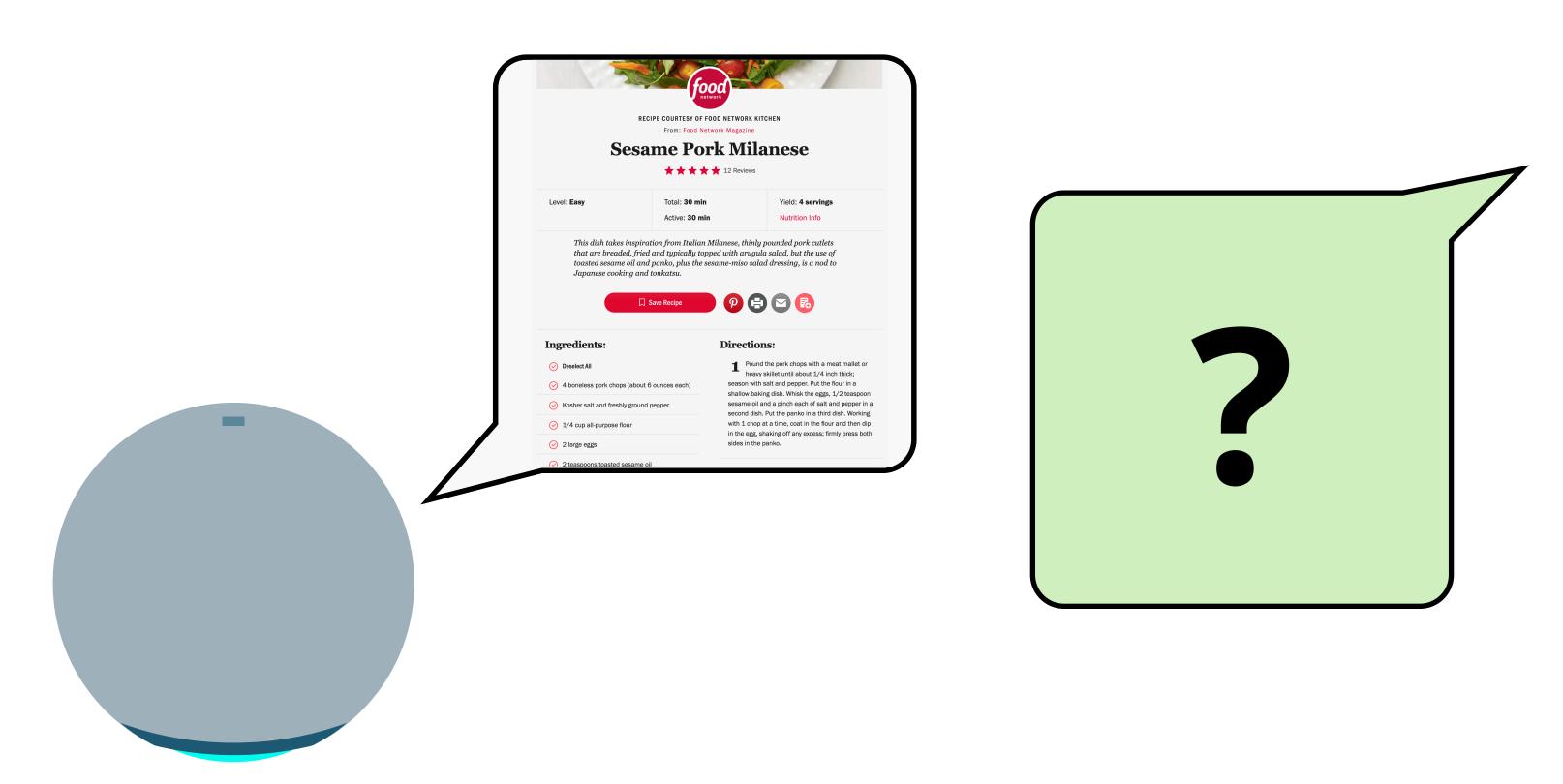
Method: observe users cooking at home with voice assistant

Method: observe users cooking at home with voice assistant



Method: observe users cooking at home with voice assistant

Outcome: definition of user challenges and potential augmentations



- 1. Missing the big picture
- 2. Information overload
- 3. Fragmentation
- 4. Time insensitivity
- 5. Missing details
- 6. Discarded context
- 7. Failure to listen
- 8. Uncommunicated affordances
- 9. Limitations of audio

- 1. Missing the big picture
- 2. Information overload
- 3. Fragmentation
- 4. Time insensitivity
- 5. Missing details
- 6. Discarded context
- 7. Failure to listen
- 8. Uncommunicated affordances
- 9. Limitations of audio

- 1. Missing the big picture
- 2. Information overload
- 3. Fragmentation
- 4. Time insensitivity
- 5. Missing details
- 6. Discarded context
- 7. Failure to listen
- 8. Uncommunicated affordances
- 9. Limitations of audio

- 1. Missing the big picture
- 2. Information overload
- 3. Fragmentation
- 4. Time insensitivity
- 5. Missing details
- 6. Discarded context
- 7. Failure to listen
- 8. Uncommunicated affordances
- 9. Limitations of audio

Put the avocados in a large bowl and gently toss with the tomatoes, lemon juice, shallots, 2 tablespoons oil, 1/2 teaspoon salt and the reserved herbs.

Transfer to a serving bowl.

Ingredients:

O Deselect All

1. Missing

Missing

- 2 tablespoons olive oil, plus more for the baking sheet and salmon
- 1/3 cup finely chopped fresh dill
- 1/3 cup finely chopped fresh flat-leaf parsley
- 3 tablespoons finely chopped fresh chives
- 3 tablespoons finely chopped fresh basil
- 2 1/4 pounds center-cut salmon fillet, skin and bones removed
- Kosher salt and freshly ground black pepper
- 2 large avocados
- 12 ounces mixed-colored cherry or grape tomatoes, halved or quartered if large
- 2 tablespoons fresh lemon juice
- 1 small shallot, minced

Directions:

1 Preheat the oven to 350 degrees F. Line a large rimmed baking sheet with parchment paper and brush it lightly with oil.

Mix together the dill, parsley, chives and basil in a small bowl. Reserve 2 tablespoons of the mixture for the salsa and set aside.

Put the salmon on the prepared baking sheet and sprinkle all over with salt and pepper. Drizzle the top lightly with oil, then top evenly with the herb mix. Bake until just cooked through, 20 to 25 minutes.

Meanwhile, halve and peel the avocados and cut them into 1/2-inch pieces. Put the avocados in a large bowl and gently toss with the tomatoes, lemon juice, shallots, 2 tablespoons oil, 1/2 teaspoon salt and the reserved herbs. Transfer to a serving bowl.

Serve the salmon with the salsa on the side.

se bowl the hallots, aspon erbs.

9 Common Challenges

What challenges do users face when synthesizing ideas within complex documents?

Participants
needed help
acquiring the
right information
at the right time.

2. Framework design

Goal: develop a method to expose connections between related info

Goal: develop a method to expose connections between related info

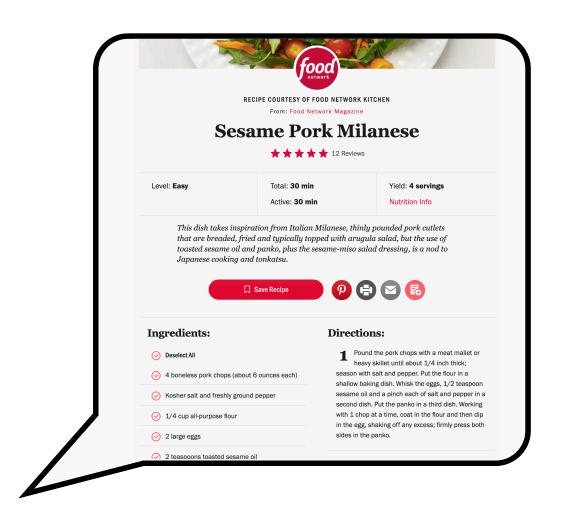
Method: iterative design with feedback from think-aloud user studies

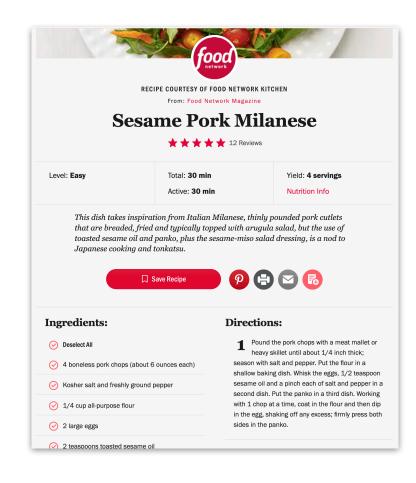
Goal: develop a method to expose connections between related info

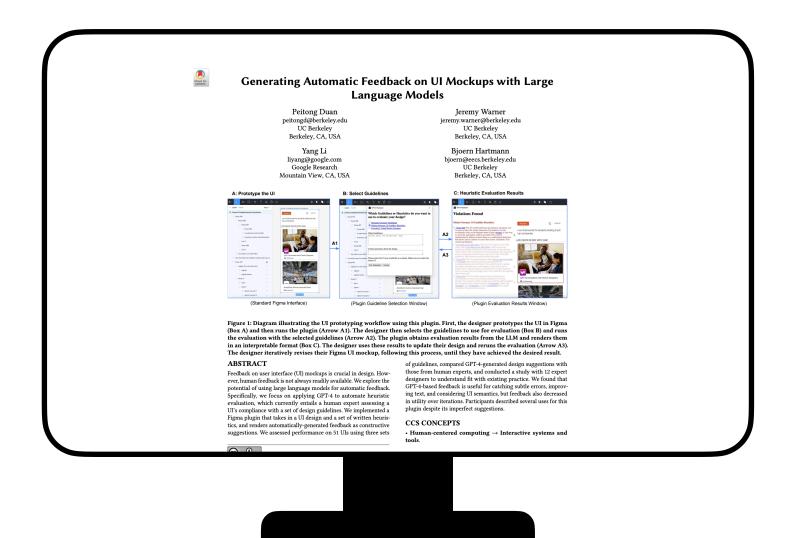
Method: iterative design with feedback from think-aloud user studies

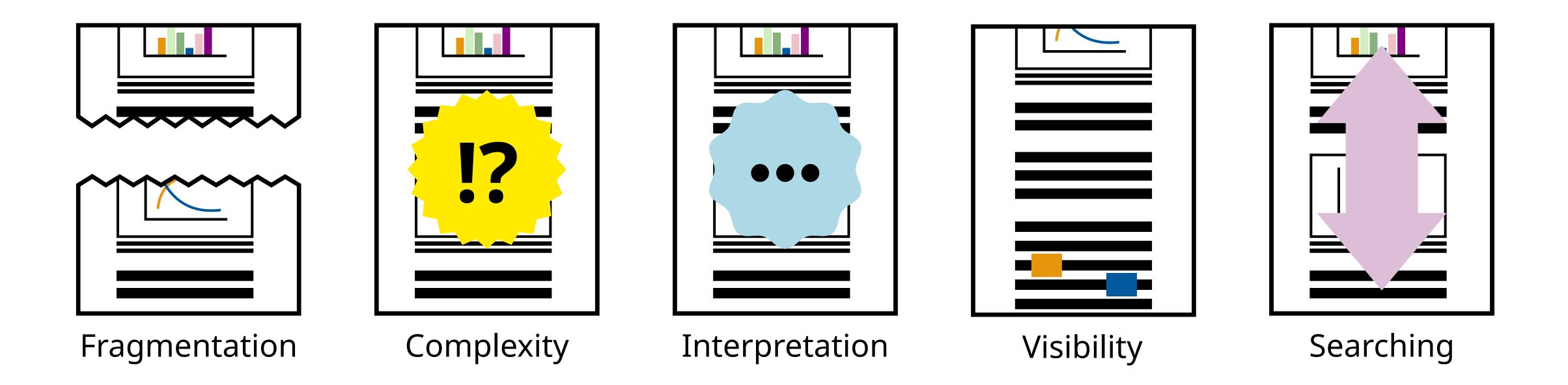
Outcome: framework for fine-grained augmentations

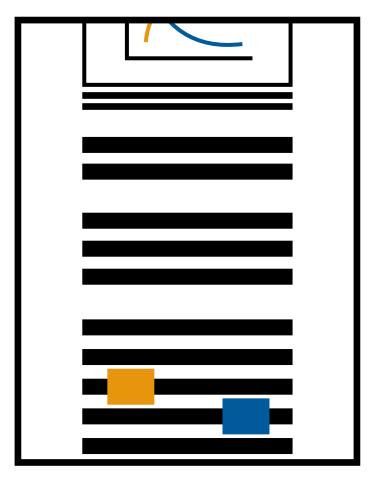
Listening to recipes -> reading papers











Visibility

Figure 1: Diagram illustrating the UI prototyping workflow using this plugin. First, the designer prototypes the UI in Figma (Box A) and then runs the plugin (Arrow A1). The designer then selects the guidelines to use for evaluation (Box B) and runs the evaluation with the selected guidelines Arrow A2). The plugin obtains evaluation results from the LLM and renders them in an retable format (Box C). The designer uses these results to update their design and reruns ation (Arrow A3). The designer iteratively revises their Figma UI mockup, following this process, until they have achieved the desired result.

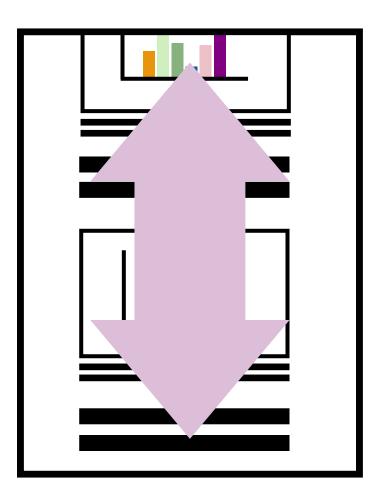
RODUCTION

face (UI) design is an essential domain that shapes how humans interact with technology and digital on. Designing user interfaces commonly involves iterative rounds of feedback and revision. Feedback is or guiding designers towards improving their UIs. While this feedback traditionally comes from humans tudies and expert evaluations), recent advances in computational UI design enable automated feedback. automated feedback is often limited in scope (e.g., the metric could only evaluate layout complexity) and llenging to interpret [50]. While human feedback is more informative, it is not readily available and me and resources for recruiting and compensating participants.

od of evaluation that still relies on human participants today is *heuristic evaluation*, where an ed evaluator checks an interface against a list of usability heuristics (rules of thumb) developed over as Nielsen's 10 Usability Heuristics [39]. Despite appearing straightforward, heuristic evaluation is g and subjective [40], dependent on the evaluator's previous training and personality-related factors e limitations further suggest an opportunity for AI-assisted evaluation.

several reasons why LLMs could be suitable for automating heuristic evaluation. The evaluation process involves rule-based reasoning, which LLMs have shown capacity for [42]. Moreover, design guidelines minately in text form, making them amenable for LLMs, and the language model could also return its is text-based explanations that designers prefer [23]. Finally, LLMs have demonstrated the ability to d and reason with mobile UIs [56], as well as generalize to new tasks and data [28, 49]. However, there asons that suggest caution for using LLMs for this task. For one, LLMs only accept text as input, while faces are complex artifacts that combine text, images, and UI components into hierarchical layouts. In LLMs have been shown to hallucinate [24] (i.e., generate false information) and may potentially identify guideline violations. This paper explores the potential of using LLMs to carry out heuristic evaluation ally. In particular, we aim to determine their performance, strengths and limitations, and how an LLM-can fit into existing design practices.

the potential of LLMs in conducting heuristic evaluation, we built a tool that enables designers to run ockups and receive text-based feedback. We package this system as a plugin for too. Figure 1 il ustrates the iterative usage of this plugin. The designer prototypes



Searching

4 STUDY METHOD

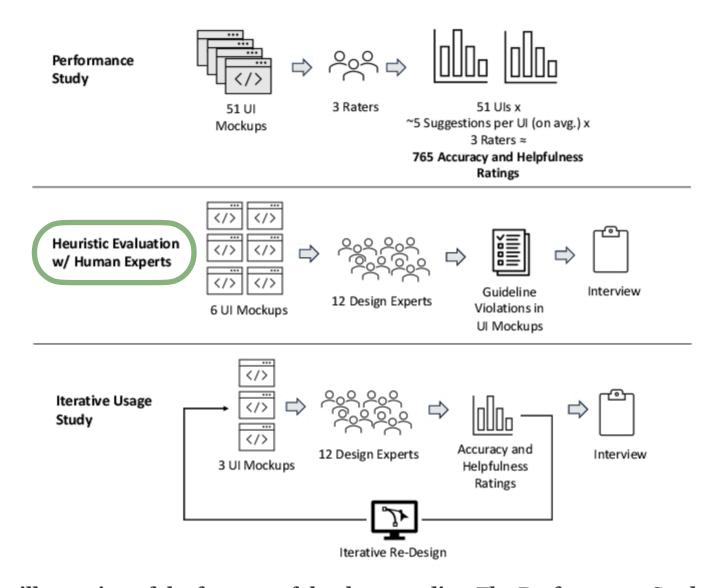
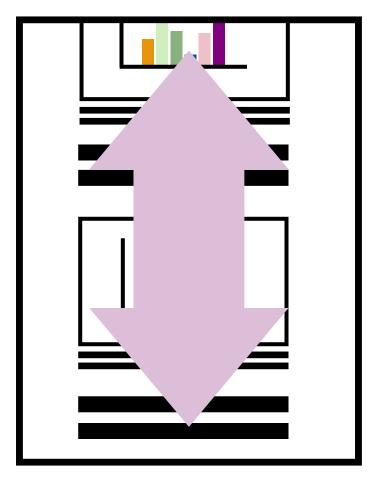
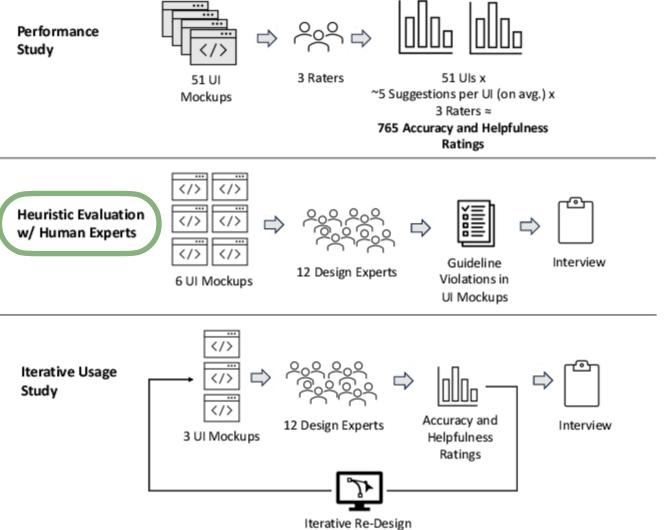


Figure 5: An illustration of the formats of the three studies. The Performance Study consists of 3 raters evaluating the accuracy and helpfulness of GPT-4-generated suggestions for 51 UI mockups. The Heuristic Evaluation Study with Human Experts consists of 12 design experts, who each looked for guideline violations in 6 UIs, and finishes with an interview asking them to compare their violations with those found by the LLM. Finally, the Iterative Usage study comprises of another group of 12 design experts, each working with 3 UI mockups. For each mockup, the expert iteratively revises the design based on the LLM's valid suggestions and rates the LLM's feedback, going through 2-3 rounds of this per UI. The Usage study concludes with an interview about the expert's experience with the tool.



Searching

4 STUDY METHOD



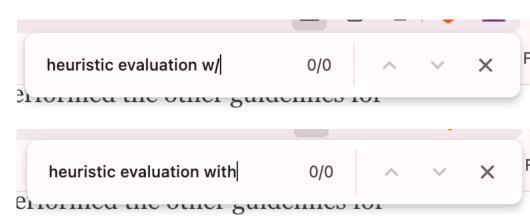
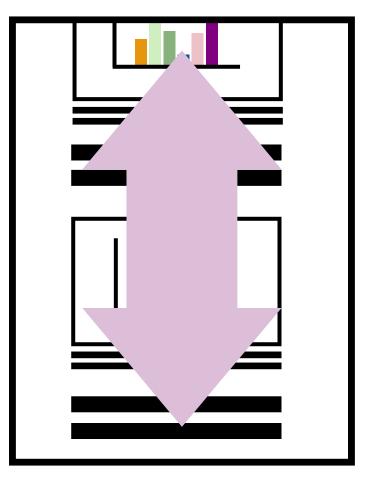


Figure 5: An illustration of the formats of the three studies. The Performance Study consists of 3 raters evaluating the accuracy and helpfulness of GPT-4-generated suggestions for 51 UI mockups. The Heuristic Evaluation Study with Human Experts consists of 12 design experts, who each looked for guideline violations in 6 UIs, and finishes with an interview asking them to compare their violations with those found by the LLM. Finally, the Iterative Usage study comprises of another group of 12 design experts, each working with 3 UI mockups. For each mockup, the expert iteratively revises the design based on the LLM's valid suggestions and rates the LLM's feedback, going through 2-3 rounds of this per UI. The Usage study concludes with an interview about the expert's experience with the tool.



Searching

4 STUDY METHOD

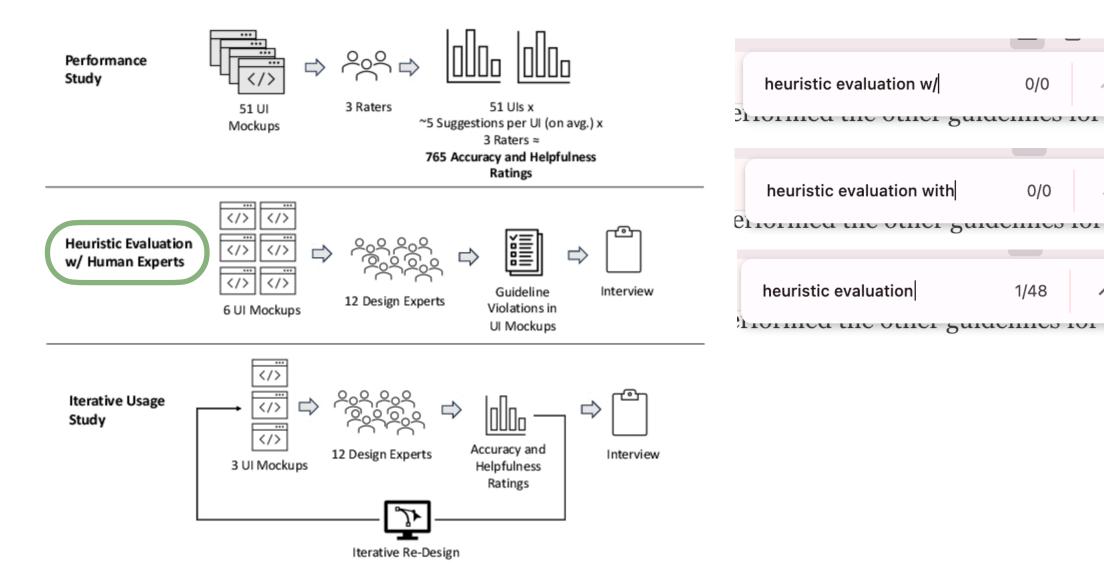
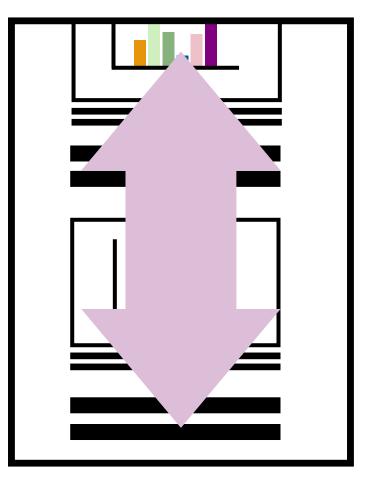


Figure 5: An illustration of the formats of the three studies. The Performance Study consists of 3 raters evaluating the accuracy and helpfulness of GPT-4-generated suggestions for 51 UI mockups. The Heuristic Evaluation Study with Human Experts consists of 12 design experts, who each looked for guideline violations in 6 UIs, and finishes with an interview asking them to compare their violations with those found by the LLM. Finally, the Iterative Usage study comprises of another group of 12 design experts, each working with 3 UI mockups. For each mockup, the expert iteratively revises the design based on the LLM's valid suggestions and rates the LLM's feedback, going through 2-3 rounds of this per UI. The Usage study concludes with an interview about the expert's experience with the tool.



Searching

4 STUDY METHOD

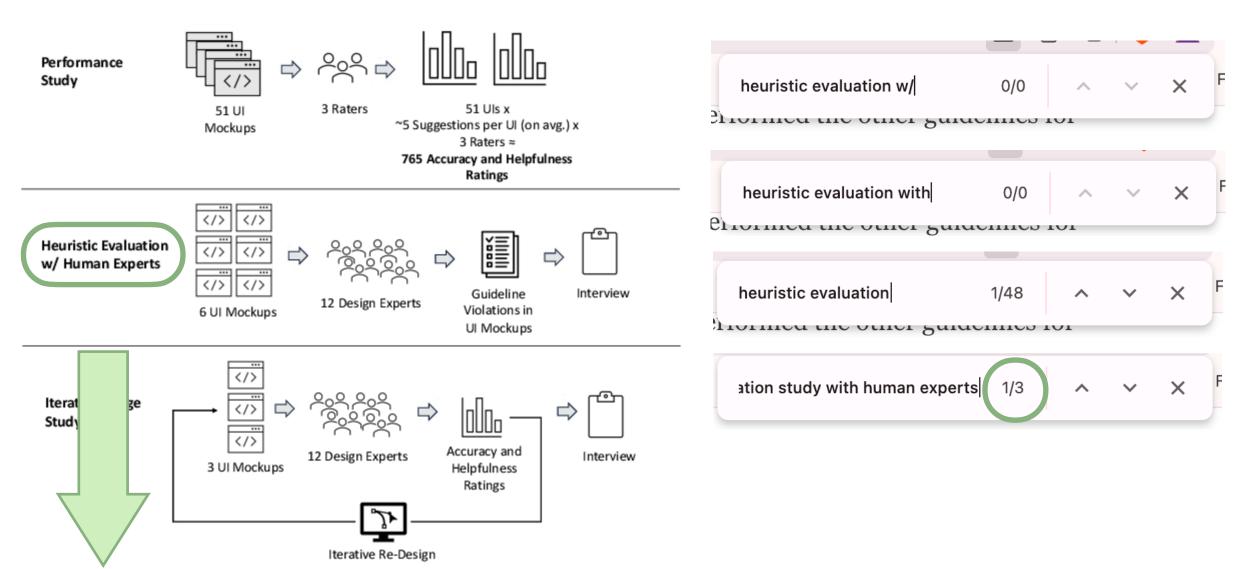
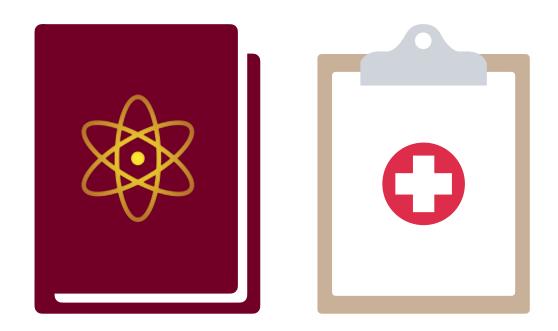


Figure 5: An illustration of the formats of the three studies. The Performance Study consists of 3 raters evaluating the accuracy and helpfulness of GPT-4-generated suggestions for 51 UI mockups. The Heuristic Evaluation Study with Human Experts consists of 12 design experts, who each looked for guideline violations in 6 UIs, and finishes with an interview asking them to compare their violations with those found by the LLM. Finally, the Iterative Usage study comprises of another group of 12 design experts, each working with 3 UI mockups. For each mockup, the expert iteratively revises the design based on the LLM's valid suggestions and rates the LLM's feedback, going through 2-3 rounds of this per UI. The Usage study concludes with an interview about the expert's experience with the tool.

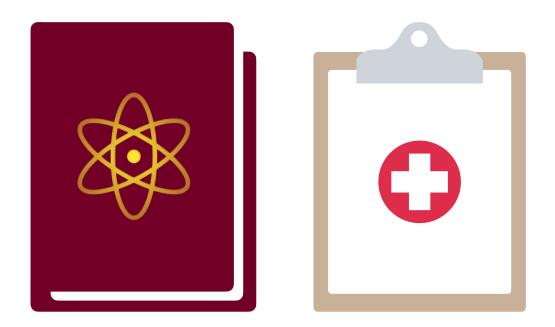
Basic units of the framework



entities: discrete, interpretable, semantically meaningful items within a document

e.g., object in a photo, jargon, data in a chart or table, element in a diagram, claim in a passage

Basic units of the framework



links: relationships between entities

e.g., supporting evidence, definition, contradiction, similar ideas, elaboration

Basic units of the framework

Now that we have an abstract framework, we need a concrete example.

3. Instantiation

Goal: develop a concrete version of the framework

Goal: develop a concrete version of the framework

Method: implement augmentations for a research paper

Goal: develop a concrete version of the framework

Method: implement augmentations for a research paper

Outcome: fully functional augmented reading interface

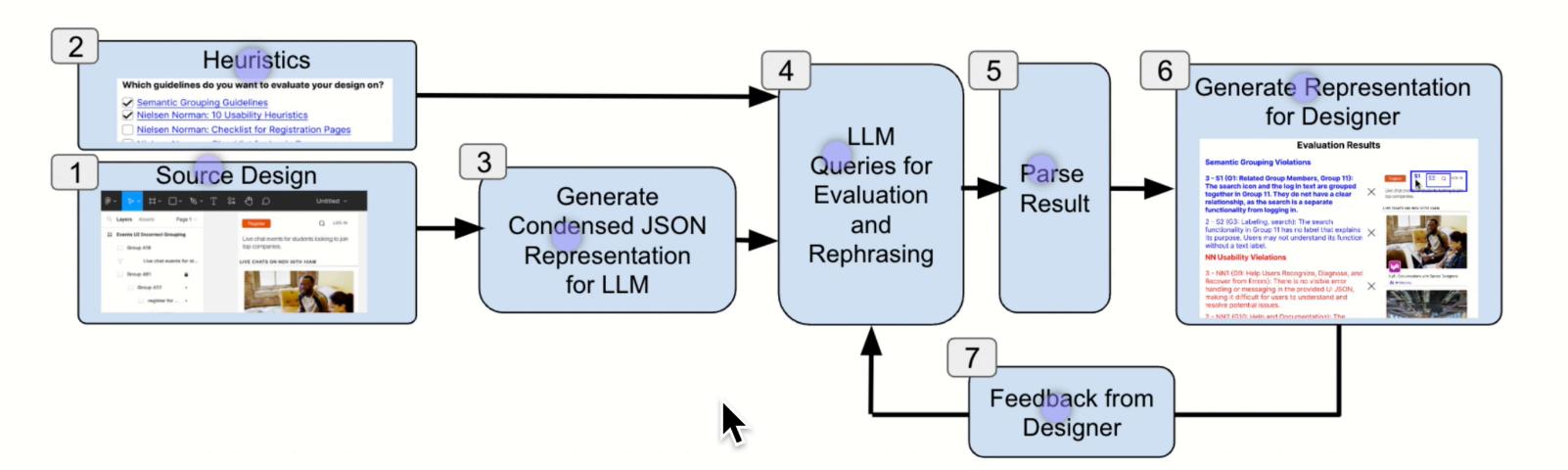
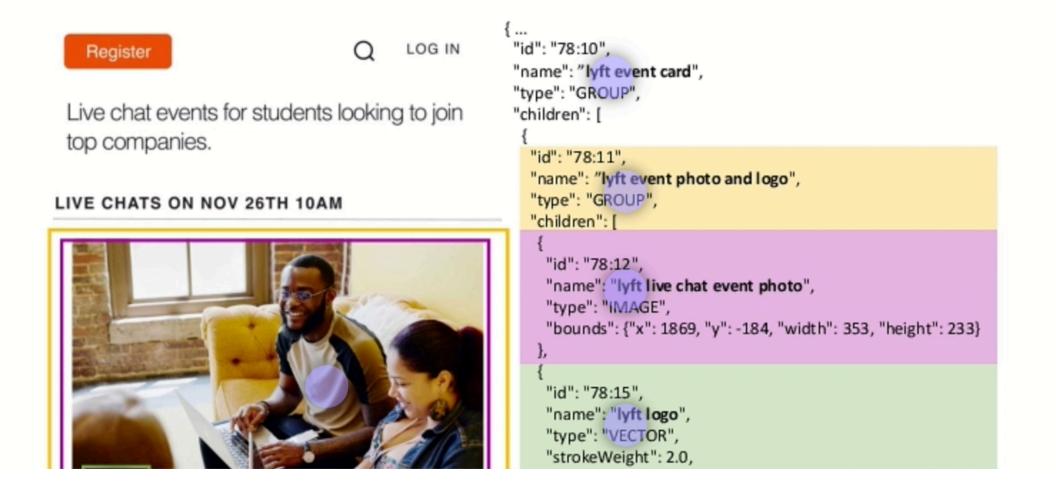


Figure 3: Our LLM-based plugin system architecture. The designer prototypes a UI in Figma (Box 1), and the plugin generates a UI representation to send to an LLM (3). The designer also selects heuristics/guidelines to use for evaluating the prototype (2), and a prompt containing the UI representation (in JSON) and guidelines is created and sent to the LLM (4). After identifying all the guideline violations, another LLM query is made to rephrase the guideline violations into constructive design advice (4). The LLM response is then programmatically parsed (5), and the plugin produces an interpretable representation of the response to display (6). The designer dismisses incorrect suggestions, which are incorporated in the LLM prompt for the next round of evaluation, if there is room in the context window (7). Pop Out Figure Scan



AI pipeline

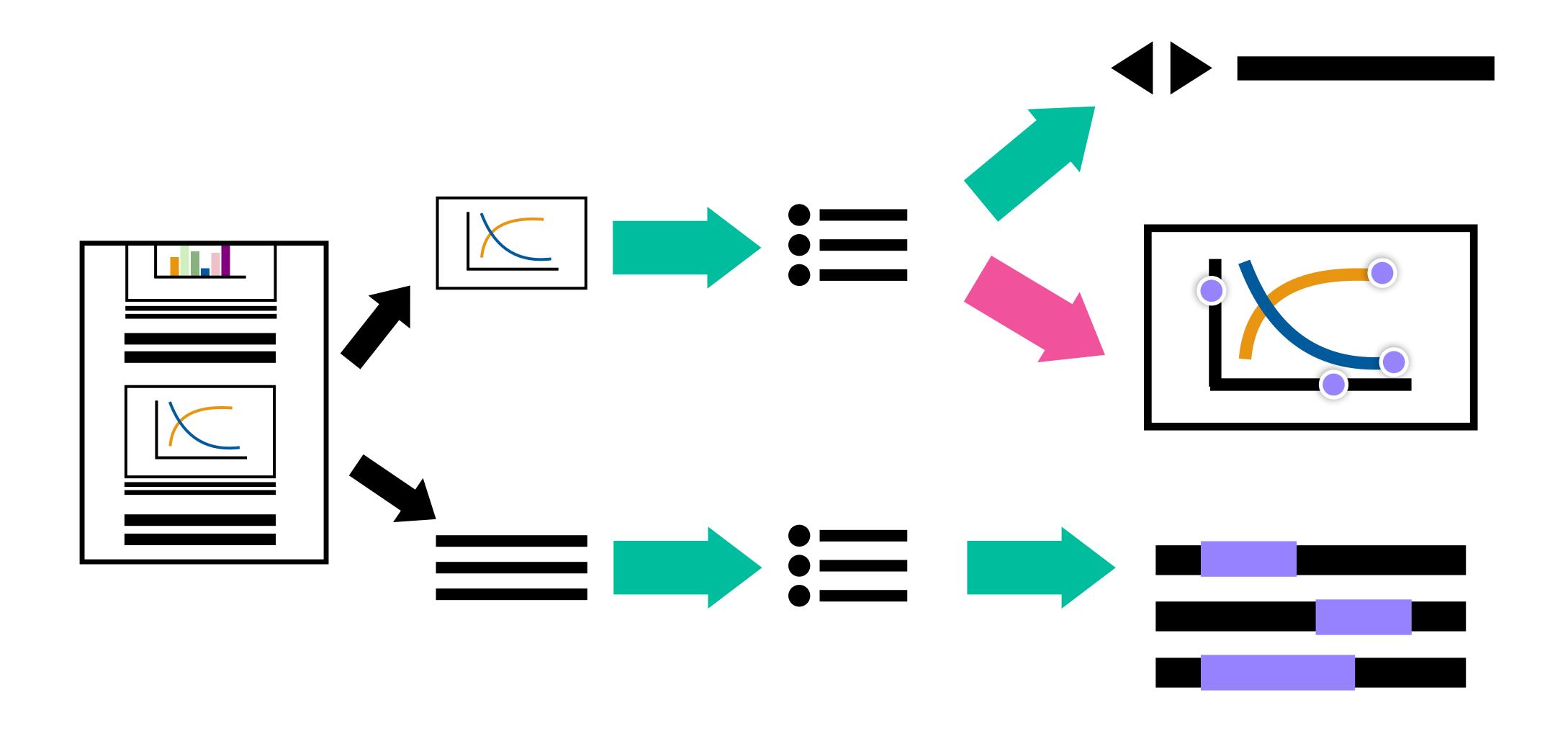
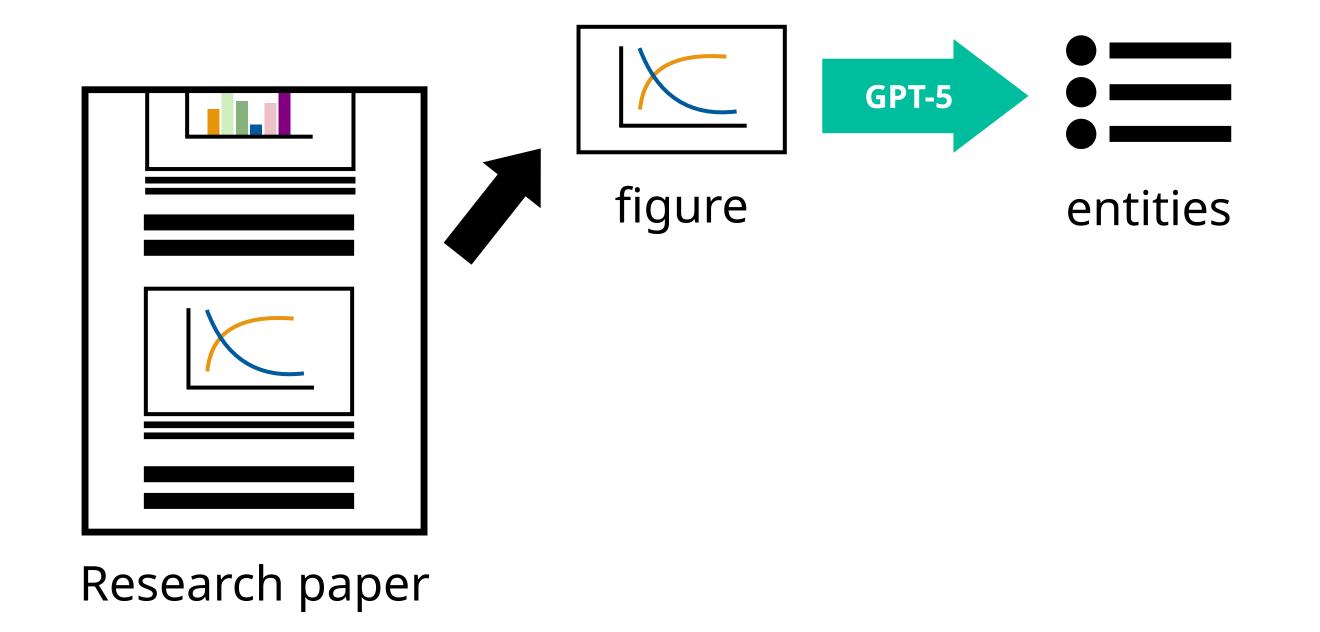
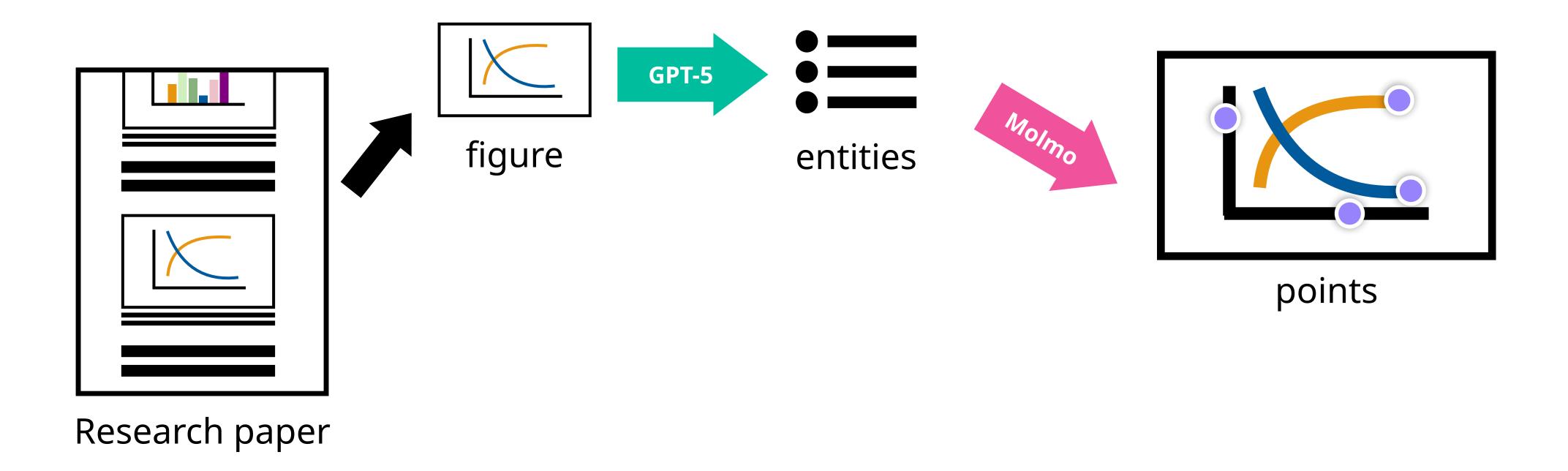


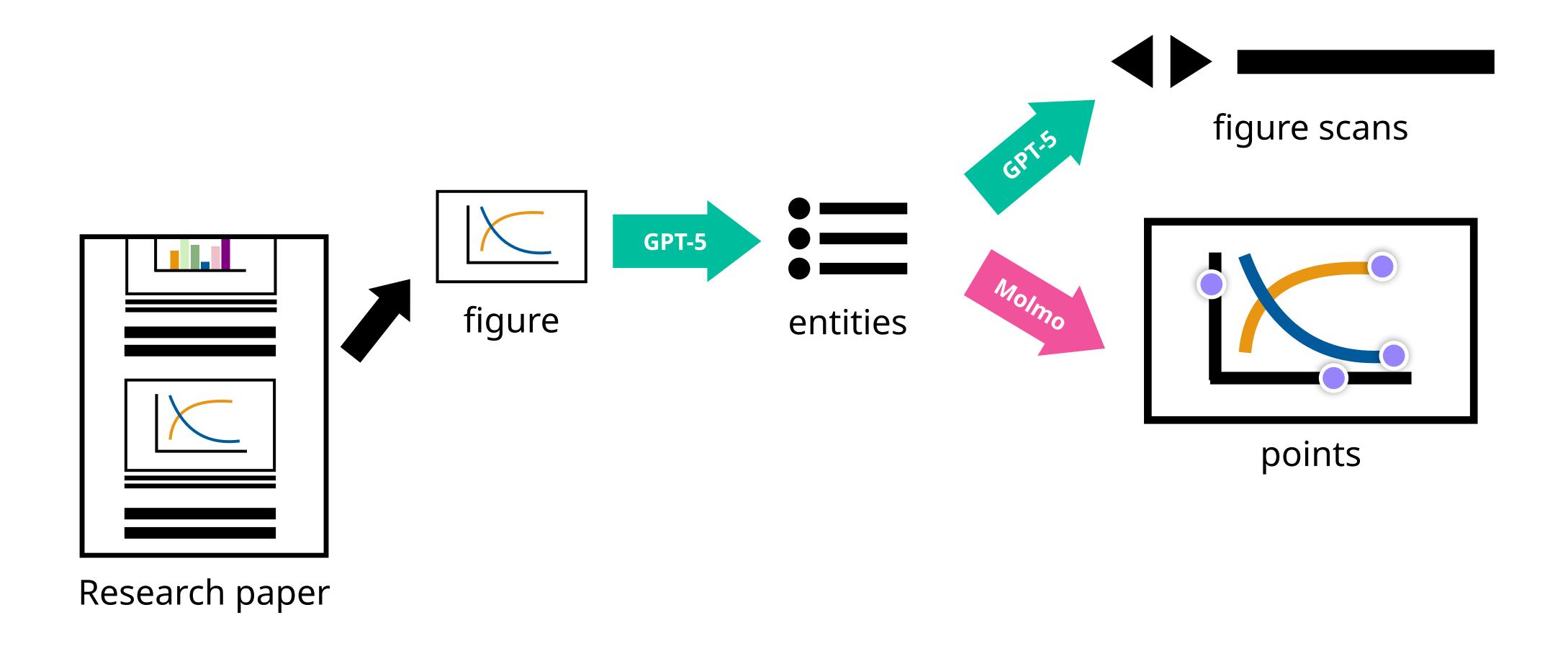
Figure entity extraction with GPT-5



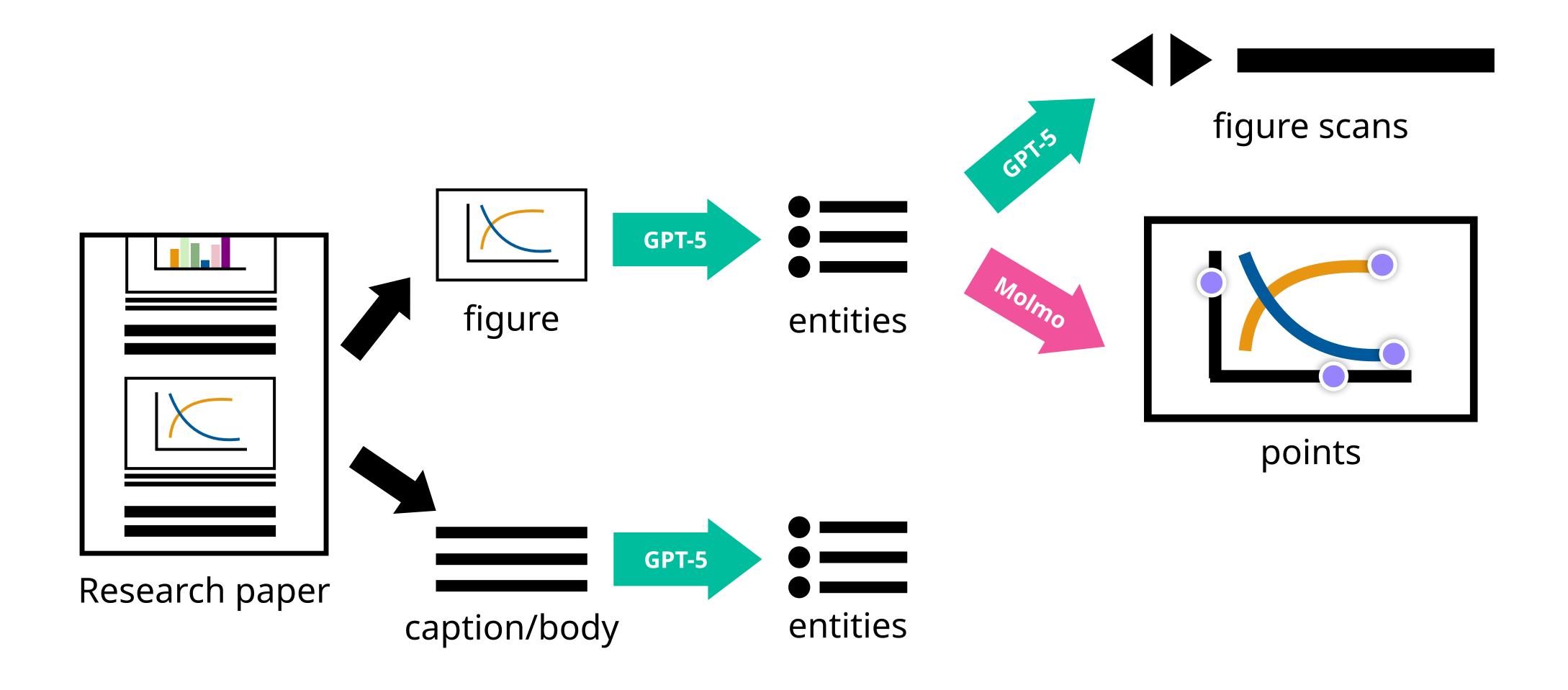
Coordinate identification with Molmo



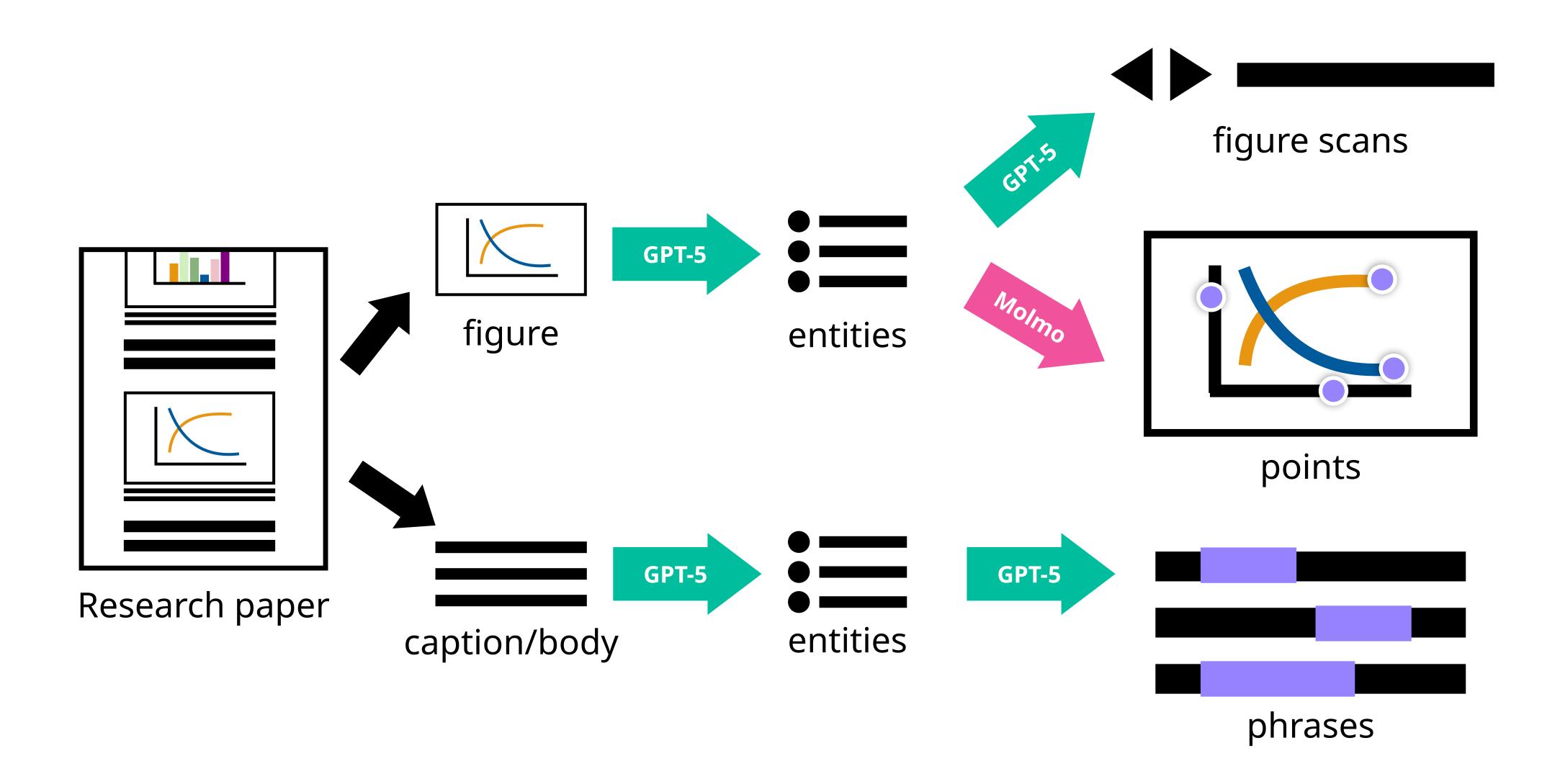
Description generation with GPT-5



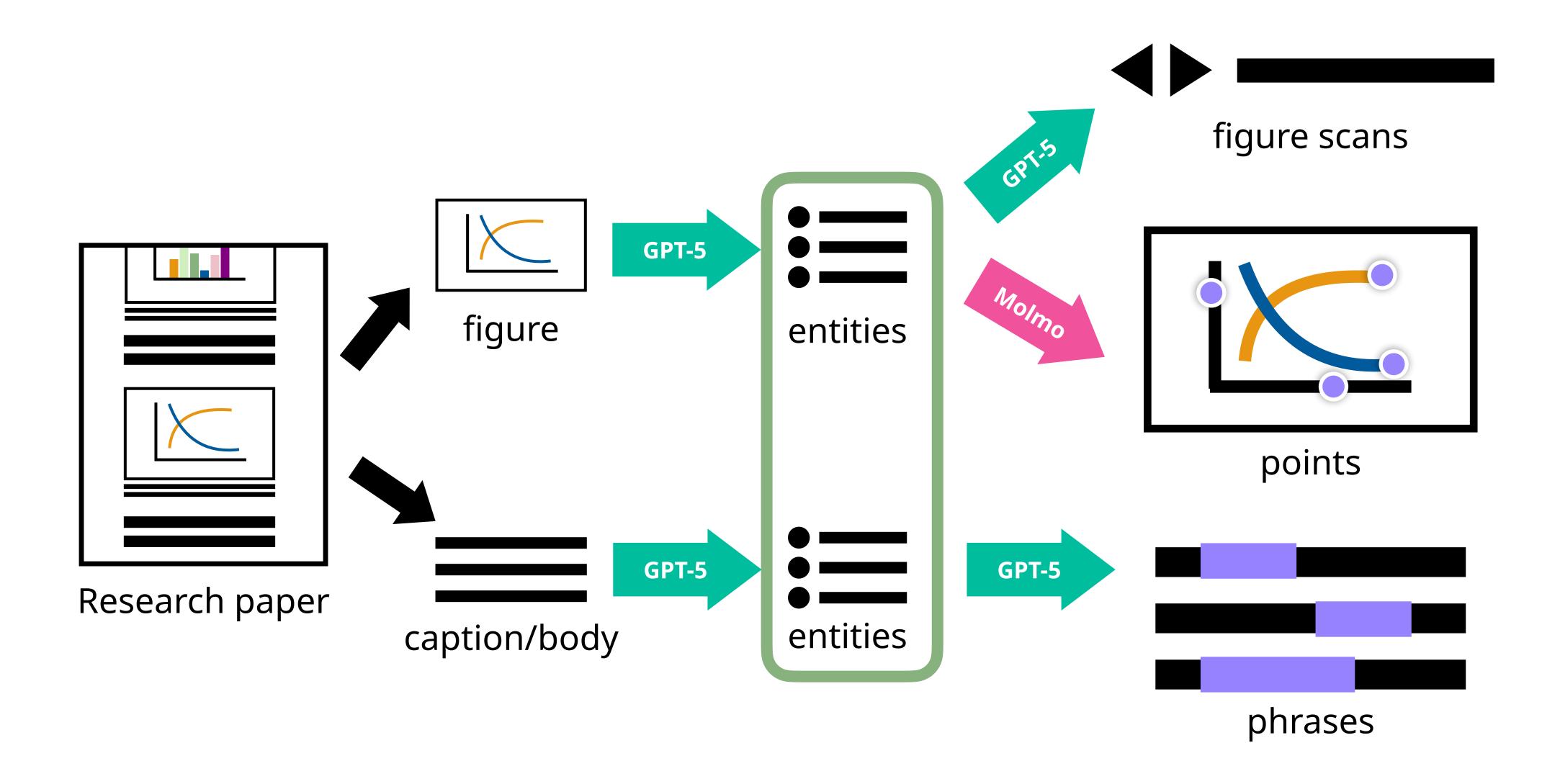
Phrase entity extraction with GPT-5



Phrase entity extraction with GPT-5



Links through matching entities



Links through matching entities

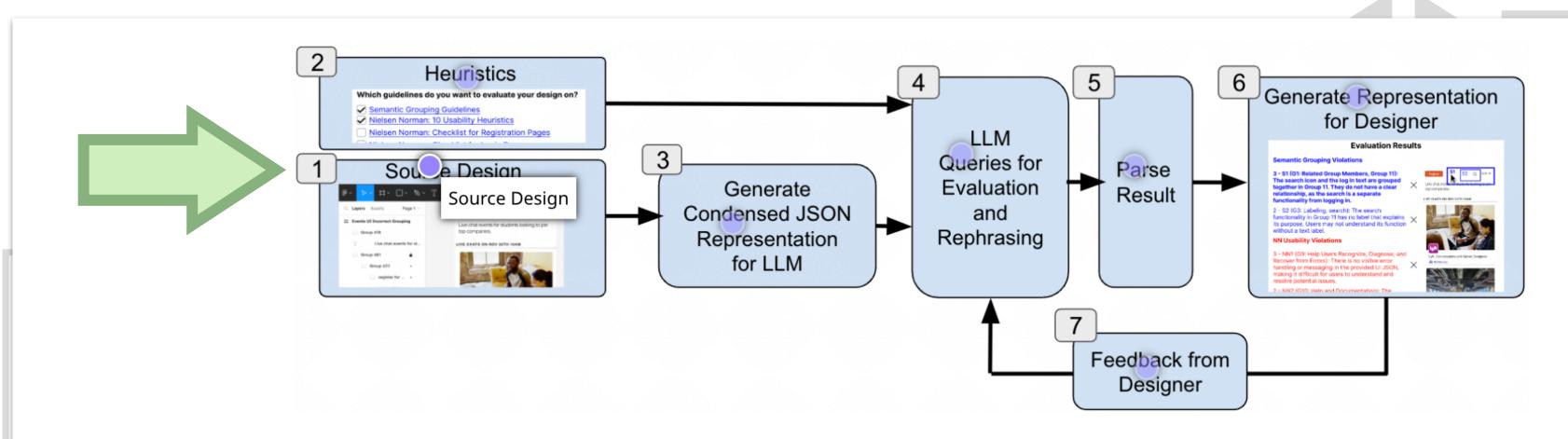
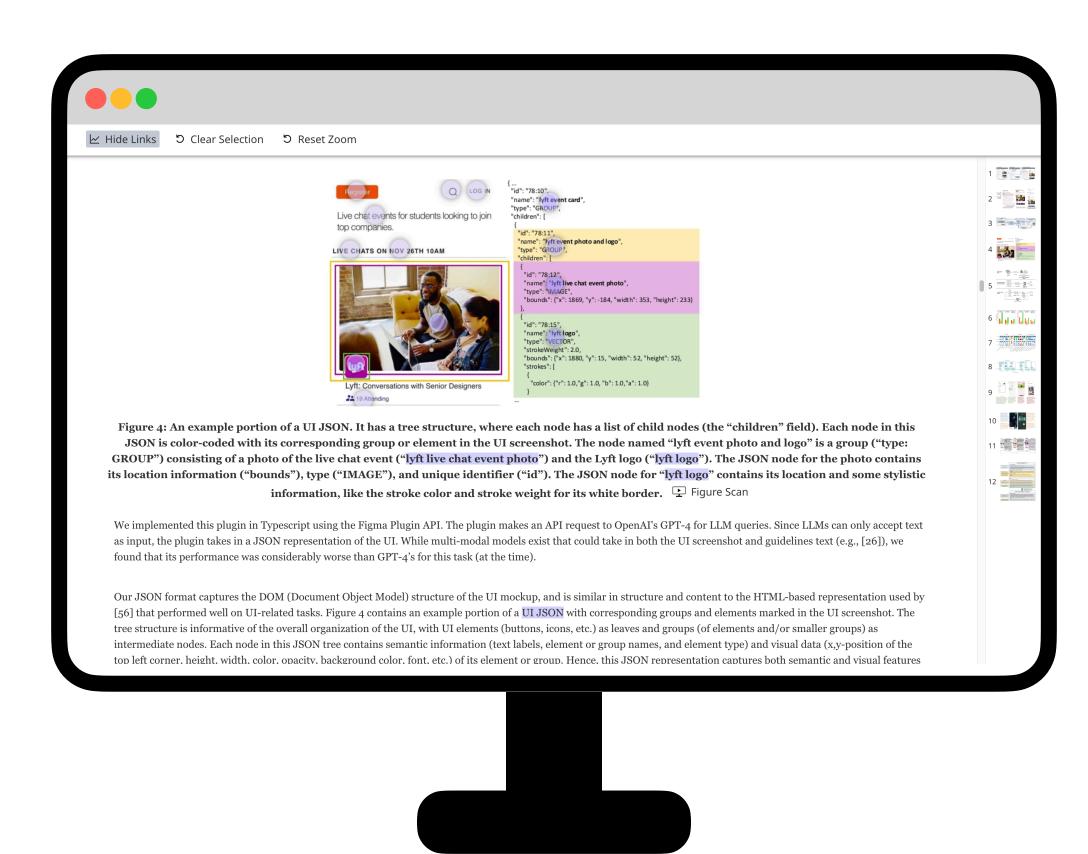


Figure 3: Our LLM-based plugin system architecture. The designer prototypes a UI in Figma (Box 1), argenerates a UI representation to send to an LLM (3). The designer also selects heuristics/guidelines to use for valuating the prototype (2), and a prompt containing the UI representation (in JSON) and guidelines is created and sent to the LLM (4). After identifying all the guideline violations, another LLM query is made to rephrase the guideline violations into constructive design advice (4). The LLM response is then programmatically parsed (5), and the plugin produces an interpretable representation of the response to display (6). The designer dismisses incorrect suggestions, which are incorporated in the LLM prompt for the next round of evaluation, if there is room in the context window (7).

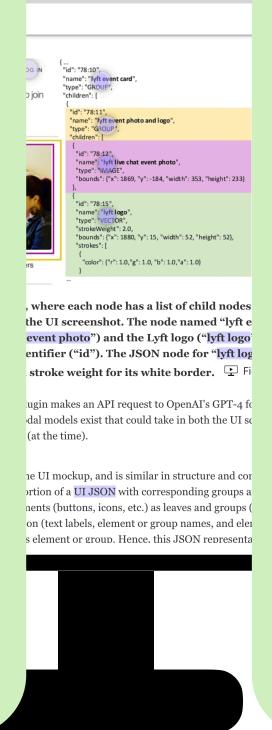
caption/body entities

phrases



2

How can we systematically represent connections between ideas to make them easier to find?



Links between entities. For papers: figure points and text highlights.

4. Evaluation

Goal: determine if the framework improves comprehension

Goal: determine if the framework improves comprehension

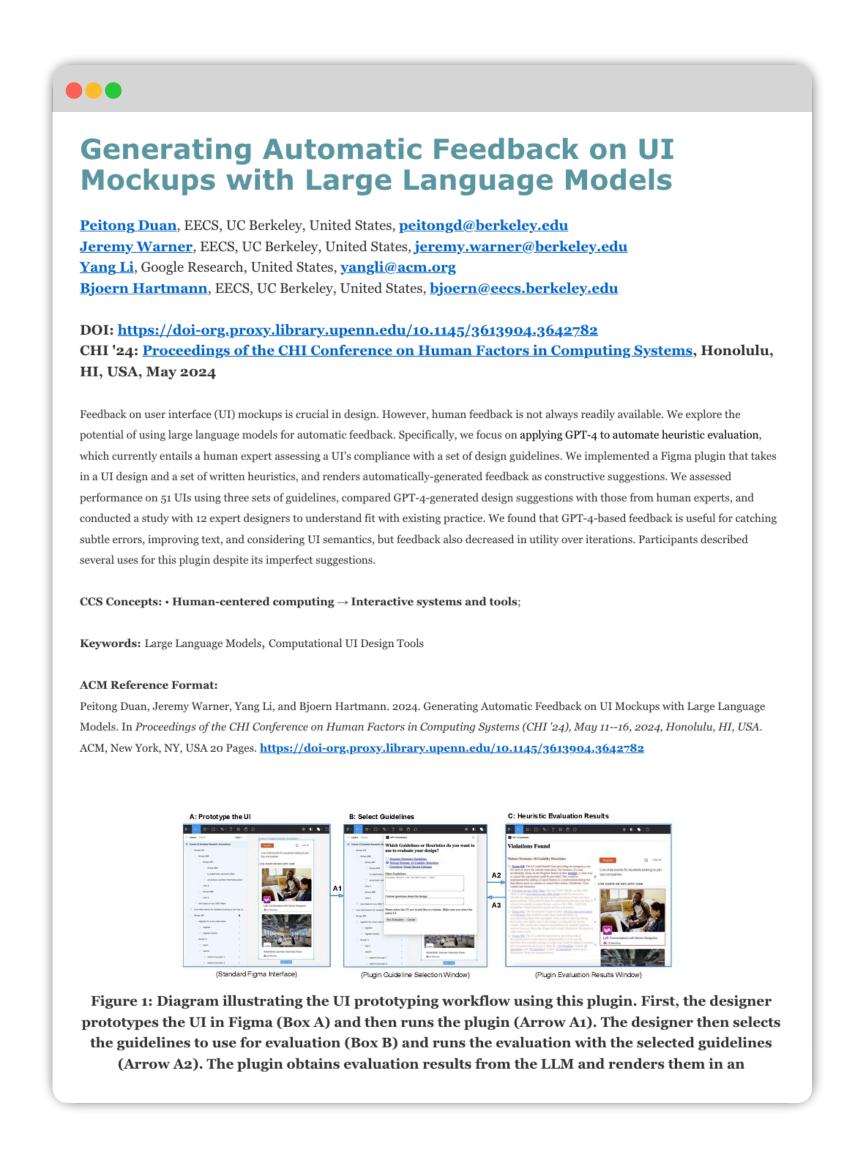
Method: between-subjects study with reading session and quiz

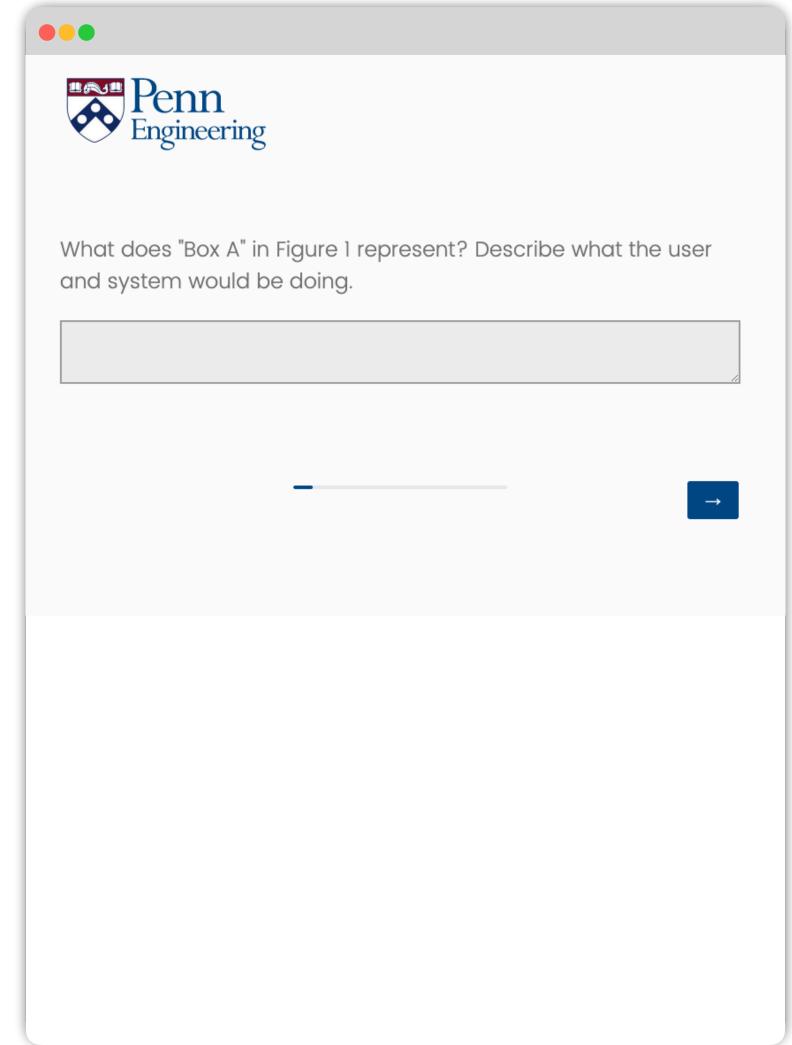
Goal: determine if the framework improves comprehension

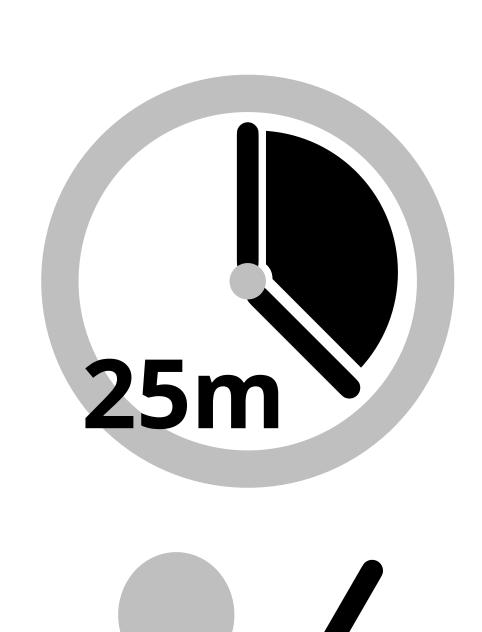
Method: between-subjects study with reading session and quiz

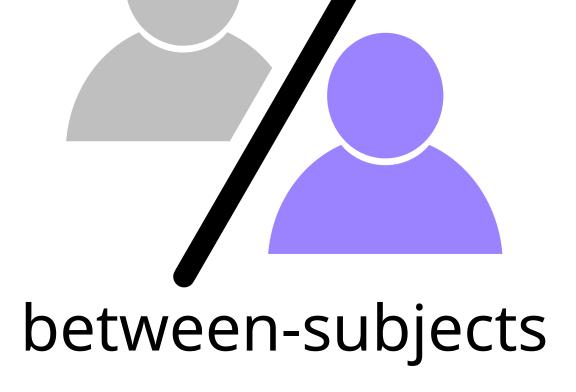
Outcome: gains in accuracy without increase in time or cognitive load

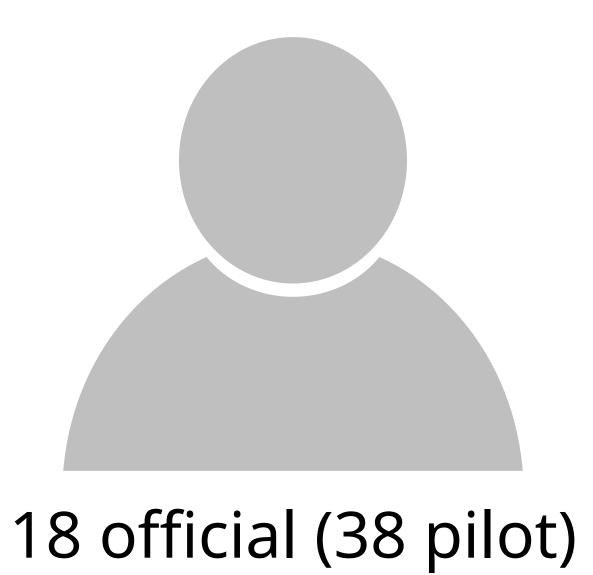
Study design

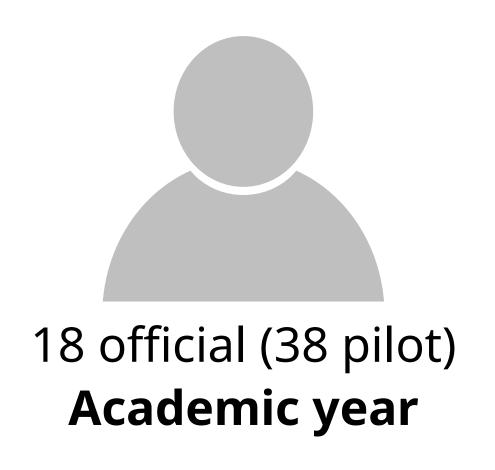






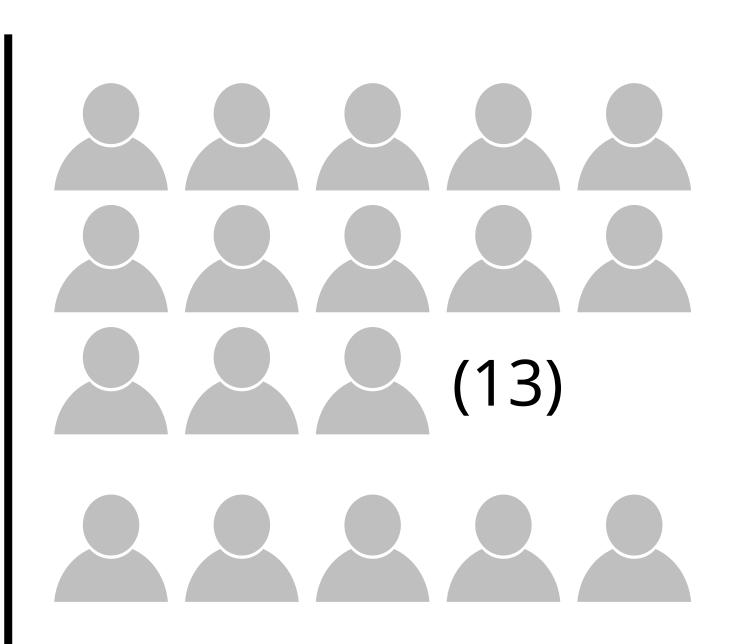






senior undergrad

accelerated master's

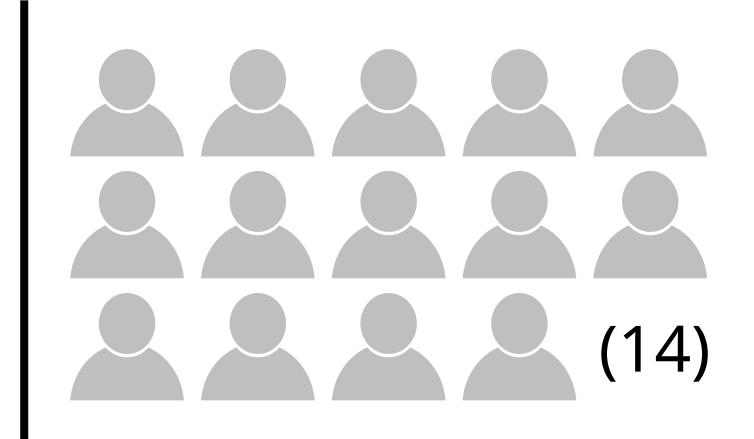


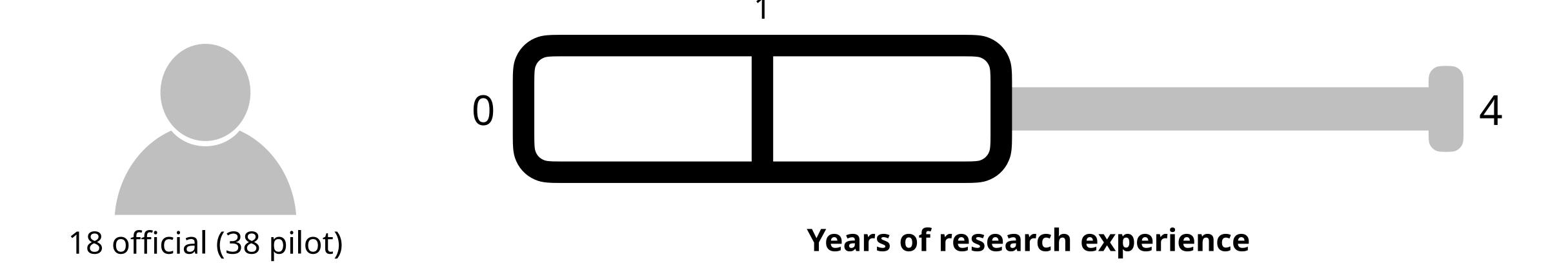
computer science

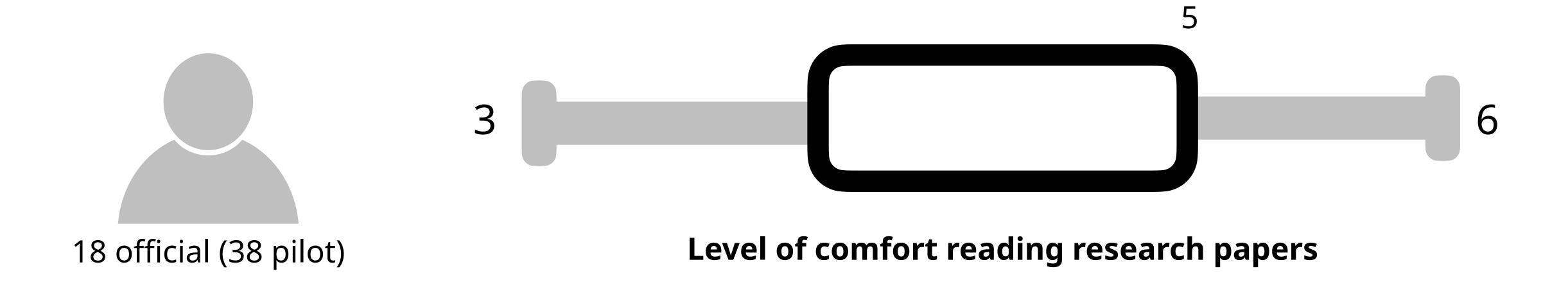
math

finance

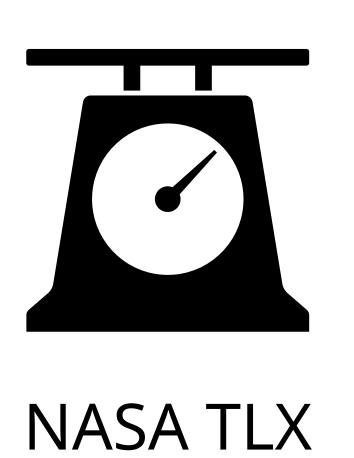
systems engineering

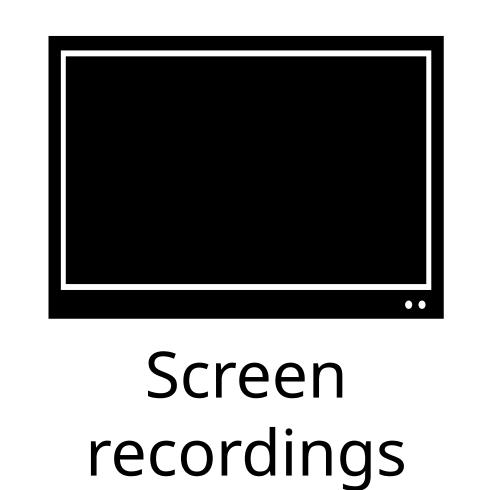




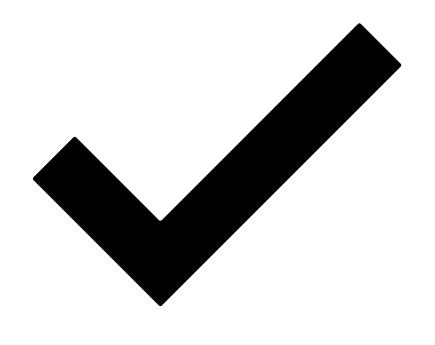


Data collected





Data collected



Quiz scores

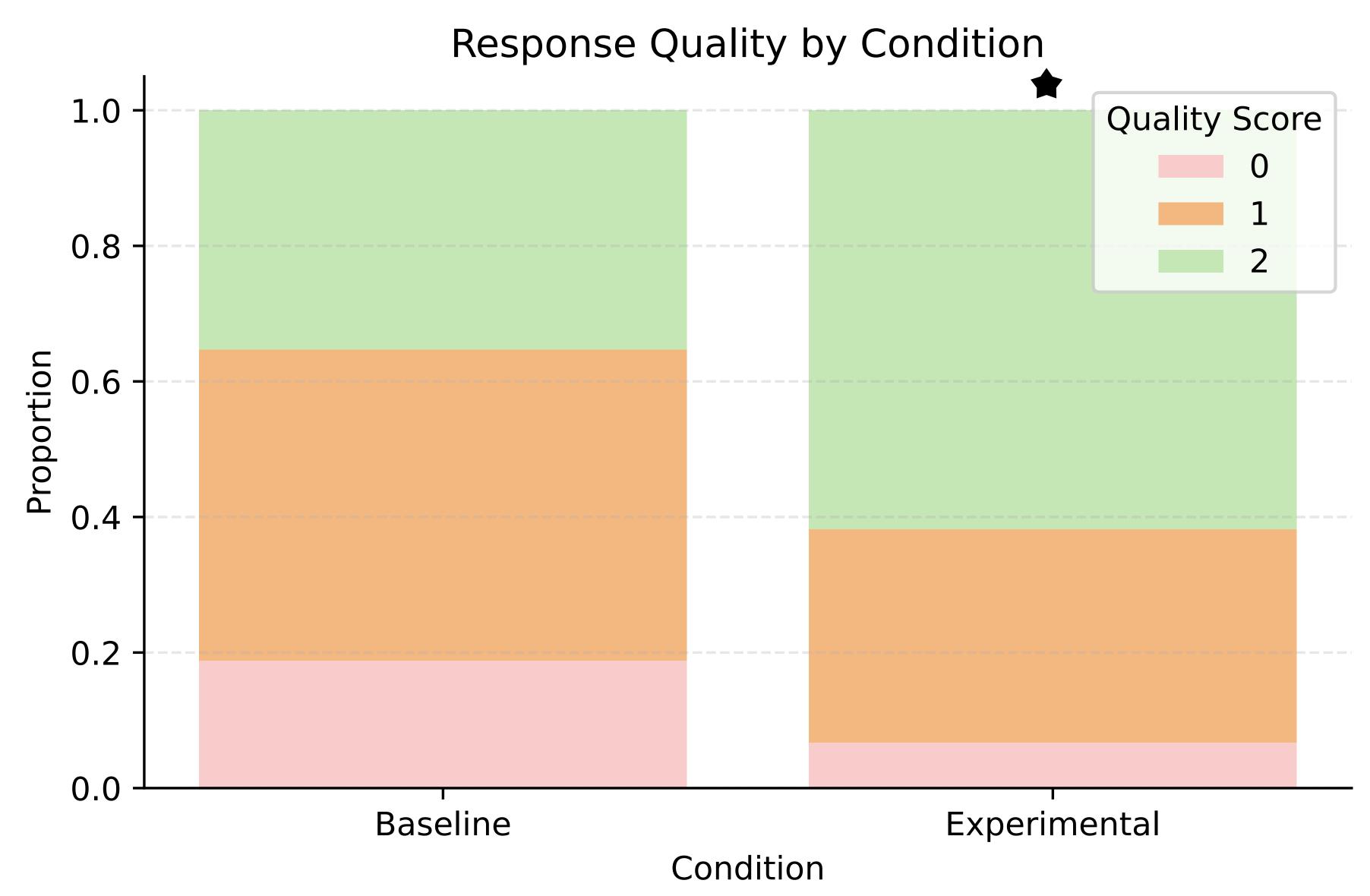
Evaluated with a rubric by 2 external annotators (Krippendorff's $\alpha = 0.75$)

Data collected

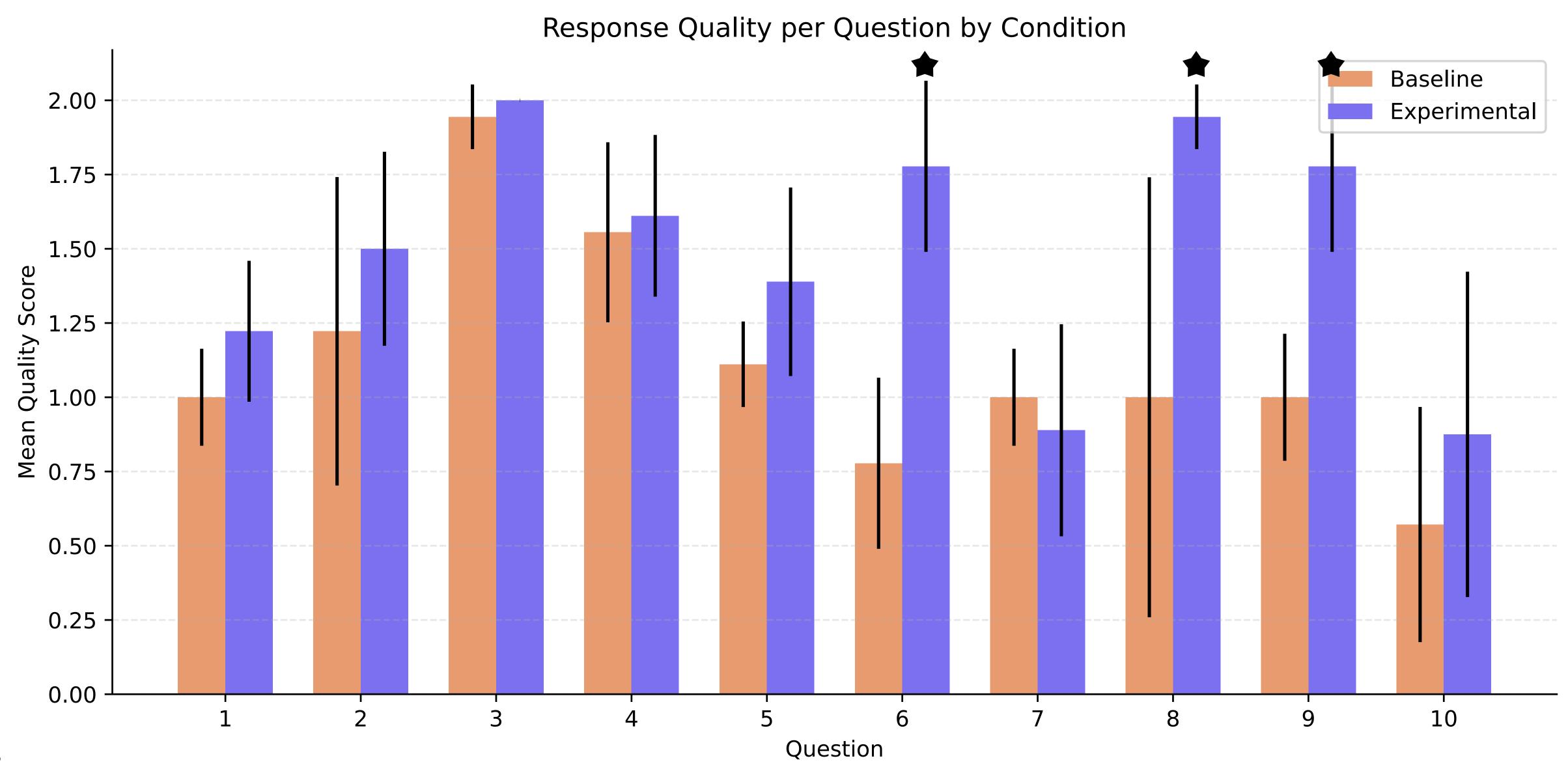
In the final section, we will analyze the data and discuss its implications on our framework.

4. Findings

Significant improvement in response quality



Significant improvement in response quality



CCS Concepts: • Human-centered computing → Interactive systems and tools;

Keywords: Large Language Models, Computational UI Design Tools

ACM Reference Format:

Peitong Duan, Jeremy Warner, Yang Li, and Bjoern Hartmann. 2024. Generating Automatic Feedback on UI Mockups with Large Language Models. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI '24), May 11--16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA 20 Pages. https://doi-org.proxy.library.upenn.edu/10.1145/3613904.3642782

Figure 1: Diagram illustrating the UI prototyping workflow using this plugin. First, the designer prototypes the UI in Figma (Box A) and then runs the plugin (Arrow A1). The designer then selects the guidelines to use for evaluation (Box B) and runs the evaluation with the selected guidelines (Arrow A2). The plugin obtains evaluation results from the LLM and renders them in an interpretable format (Box C). The designer uses these results to update their design and reruns the evaluation (Arrow A3). The designer iteratively revises their Figma UI mockup, following this process, until they have achieved the desired result.

1 INTRODUCTION

User interface (UI) design is an essential domain that shapes how humans interact with technology and digital information. Designing user interfaces commonly involves iterative rounds of feedback and revision. Feedback is essential for guiding designers towards improving their UIs. While this feedback traditionally comes from humans (via user studies and expert evaluations), recent advances in computational UI design enable automated feedback.

What does "Box A" in Figure 1 represent? Describe what the user and system would be doing.

 \rightarrow

Powered by Qualtrics 🖸

5.4 Qualitative Results: GPT-4 Strengths and Weakness

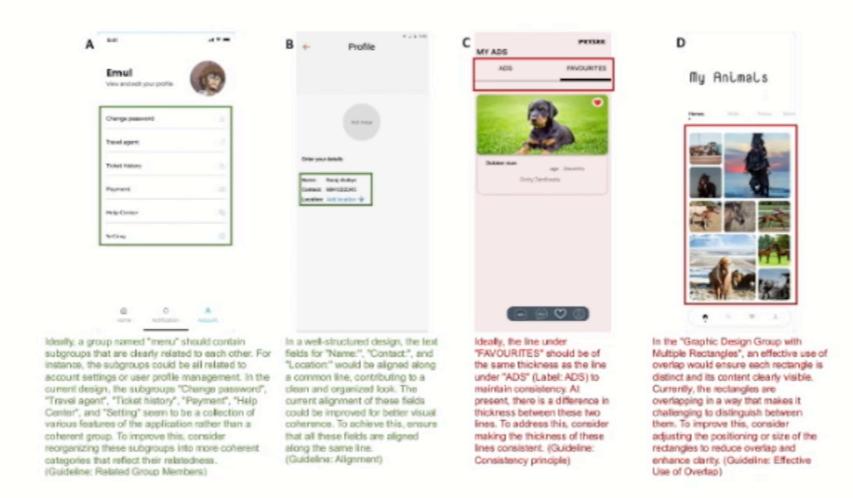


Figure 9: Examples of GPT-4 suggestions that all participants found very helpful or unhelpful, along with their corresponding UIs above (with the relevant group marked). The suggestions for UIs A and B received ratings of 5 for helpfulness and were rated as accurate by all three participants (from the Usage study). The "Contact:" field for UI B is slightly misaligned from the other fields, which GPT-4 caught. UIs C and D were rated 1 for helpfulness by all three participants. For UI C, the LLM stated that the line thickness was uneven under the "ADS" and "FAVORITES" tab, which is technically accurate (and some participants rated it as accurate) but unhelpful as the uneven line thickness is meant to indicate the selected tab.

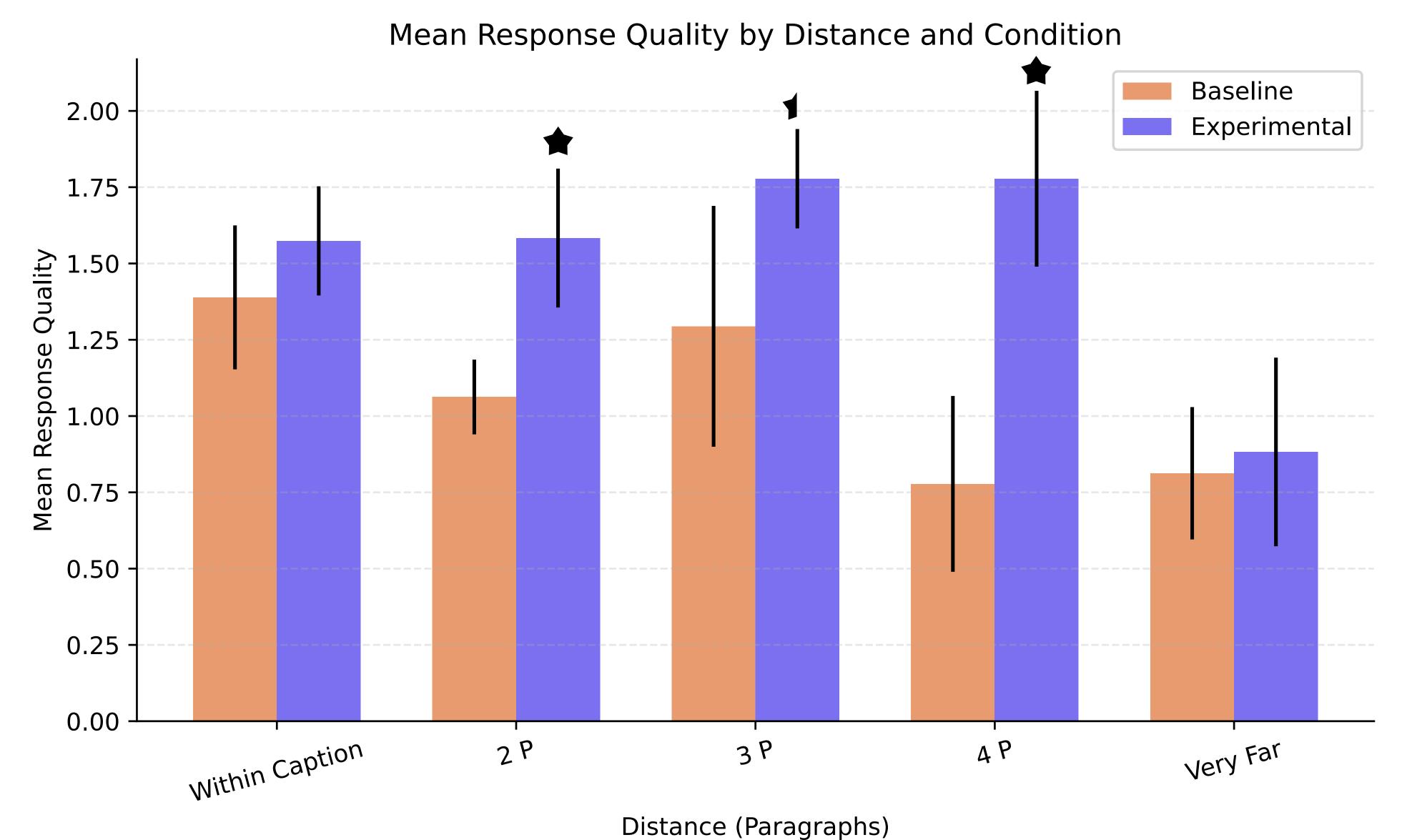
We analyzed GPT-4's suggestions, corresponding expert ratings, explanations, and interview responses from the Usage study. Through grounded theory coding [16] of the qualitative data and subsequent thematic analysis [4], we identified the following emerging themes on GPT-4's strengths and weaknesses. Figure 9 contains examples of high and low-rated LLM suggestions to illustrate some of these themes.

5.4.1 Strength 1: Identification of Subtle Issues (12/12 Participants). All participants found GPT-4's ability to identify subtle, easy-to-miss issues helpful. This includes problems like misalignment, uneven spacing, poor color contrast,

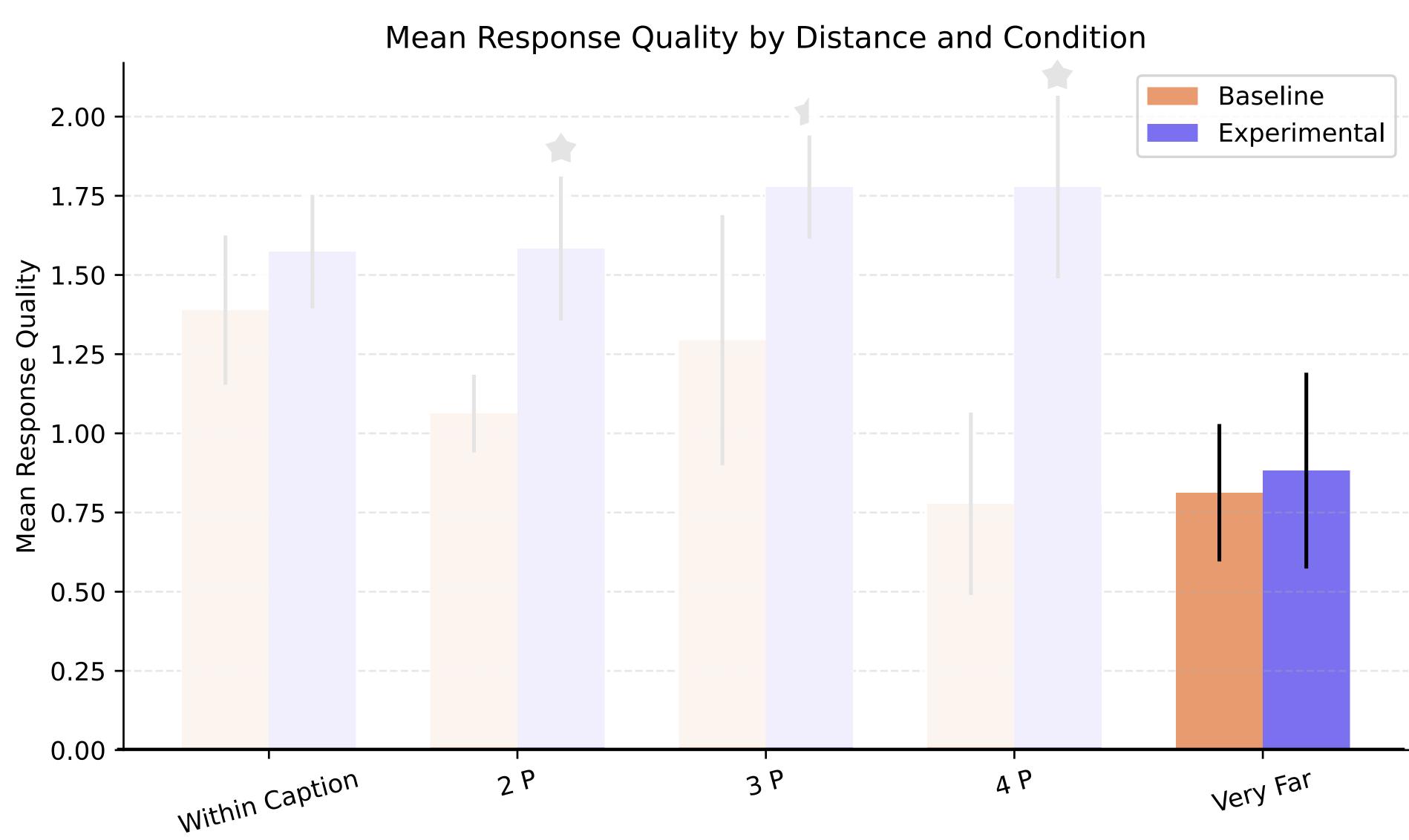
Why was UID in Figure 9 rated 1 for helpfulness?

 \rightarrow

Significant improvement in response quality



Significant improvement in response quality



Distance (Paragraphs)

3.3 Implementation

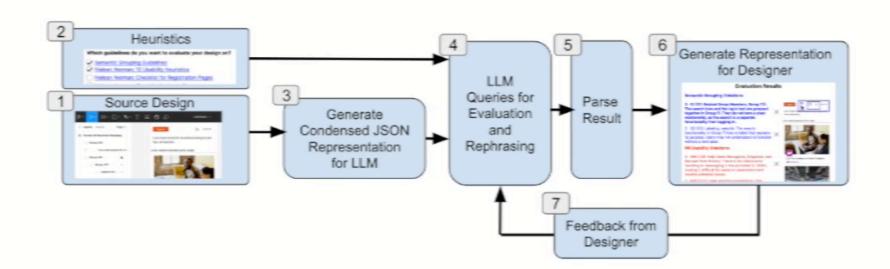


Figure 3: Our LLM-based plugin system architecture. The designer prototypes a UI in Figma (Box 1), and the plugin generates a UI representation to send to an LLM (3). The designer also selects heuristics/guidelines to use for evaluating the prototype (2), and a prompt containing the UI representation (in JSON) and guidelines is created and sent to the LLM (4). After identifying all the guideline violations, another LLM query is made to rephrase the guideline violations into constructive design advice (4). The LLM response is then programmatically parsed (5), and the plugin produces an interpretable representation of the response to display (6). The designer dismisses incorrect suggestions, which are incorporated in the LLM prompt for the next round of evaluation, if there is room in the context window (7).

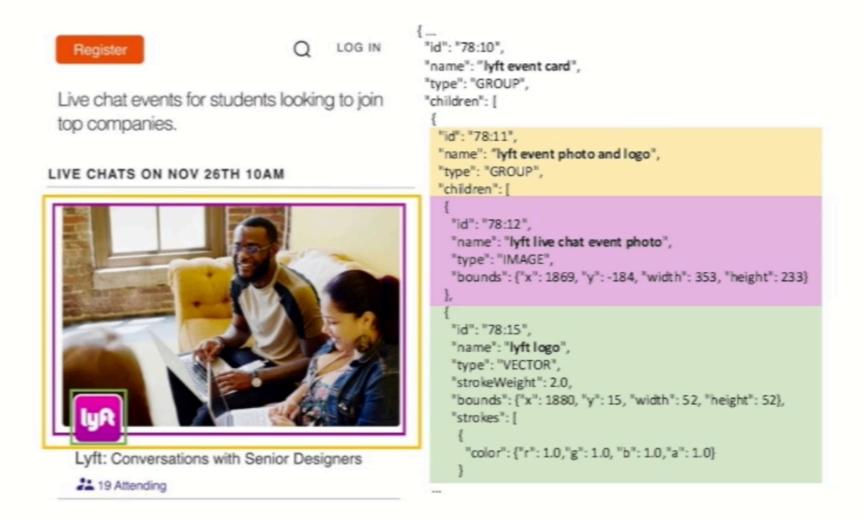
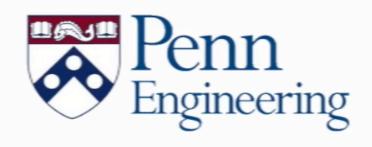


Figure 4. An example neution of a III ISON It has a tree structure whose each node has a list of

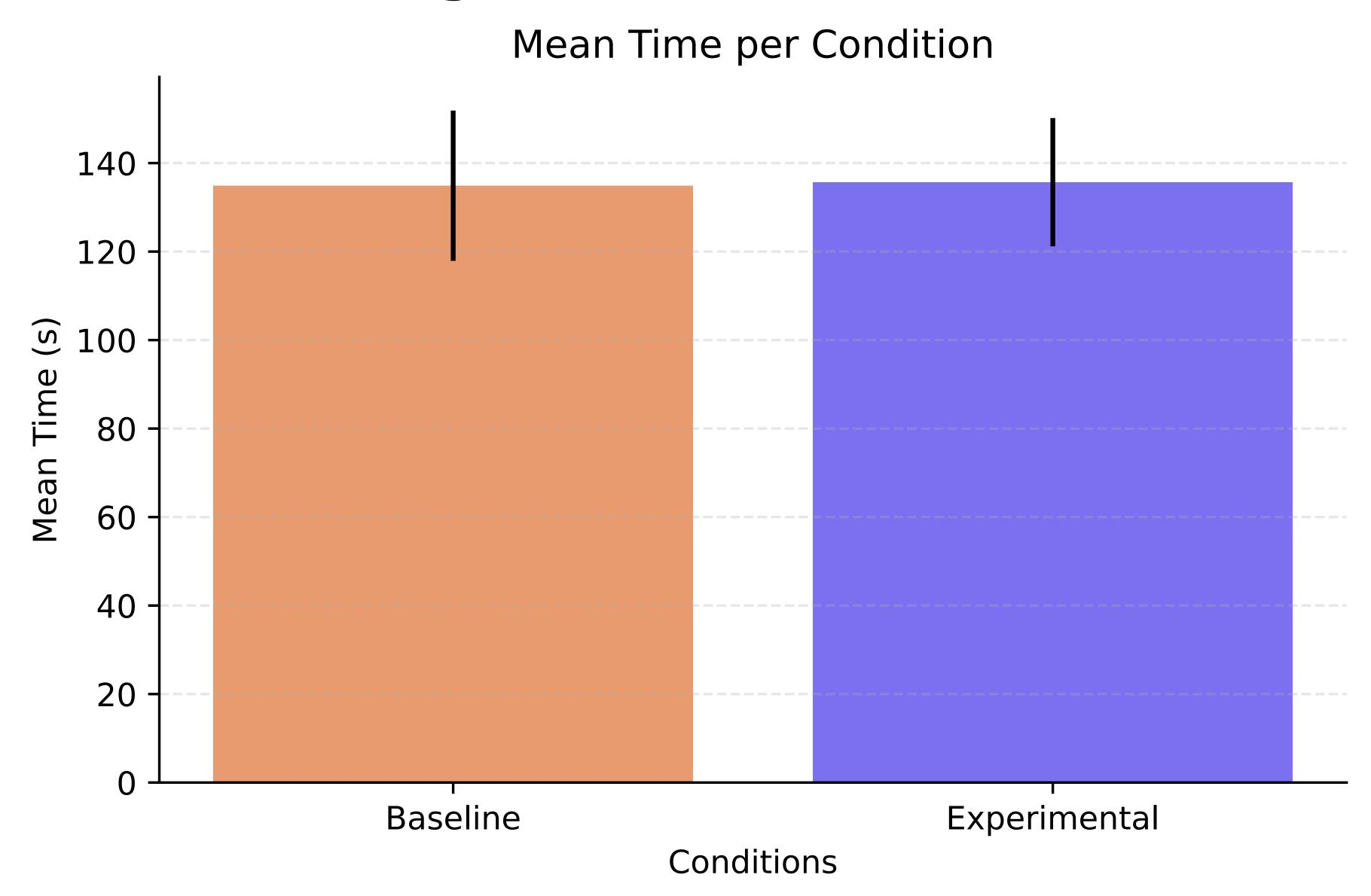


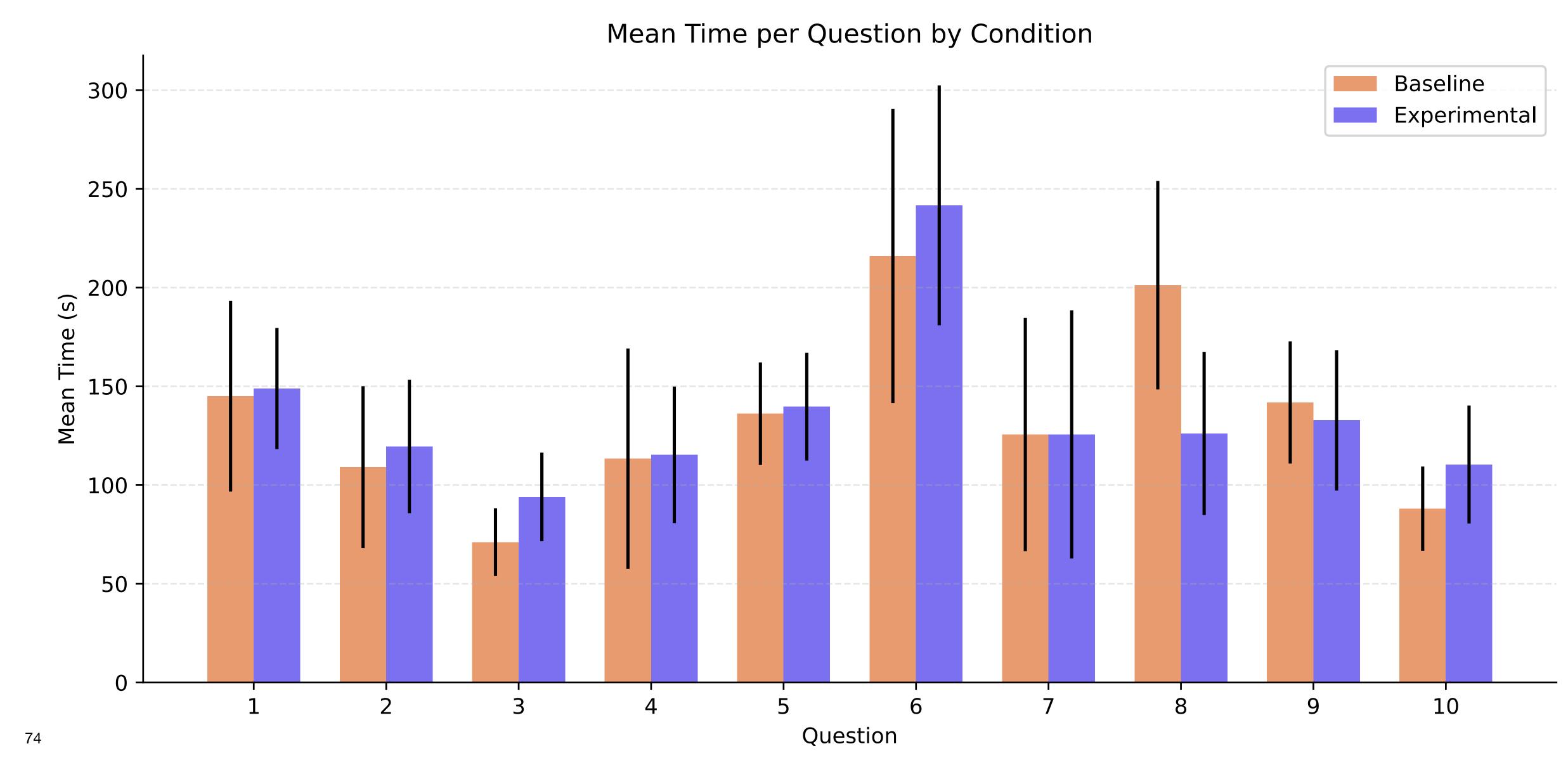
In what format are heuristics injected into the LLM prompt after the designer selects guidelines?

 \rightarrow

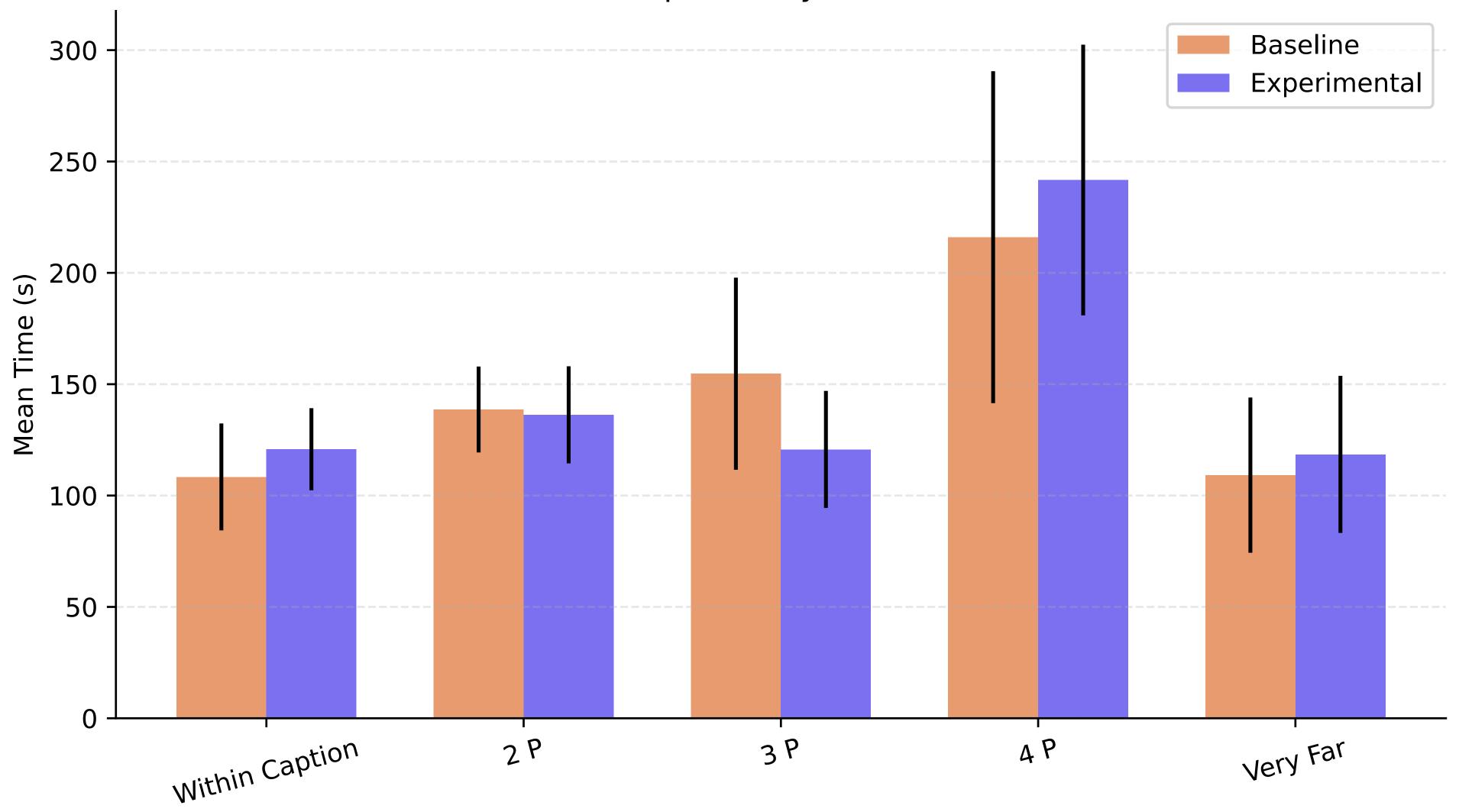
Continue to the next question when you are ready.

Our framework helped more for moderate distances (with opportunity for future work on far distances).

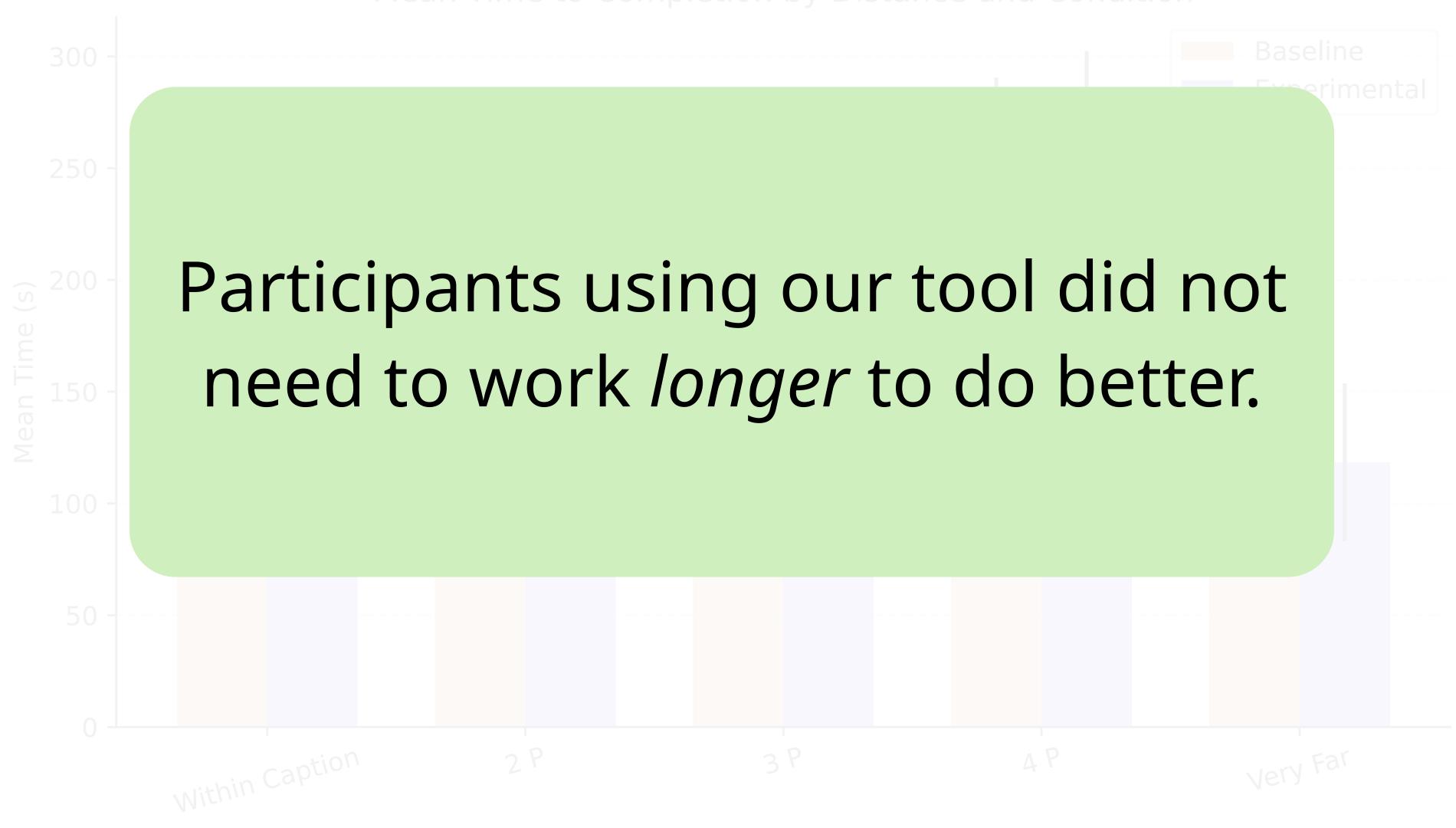




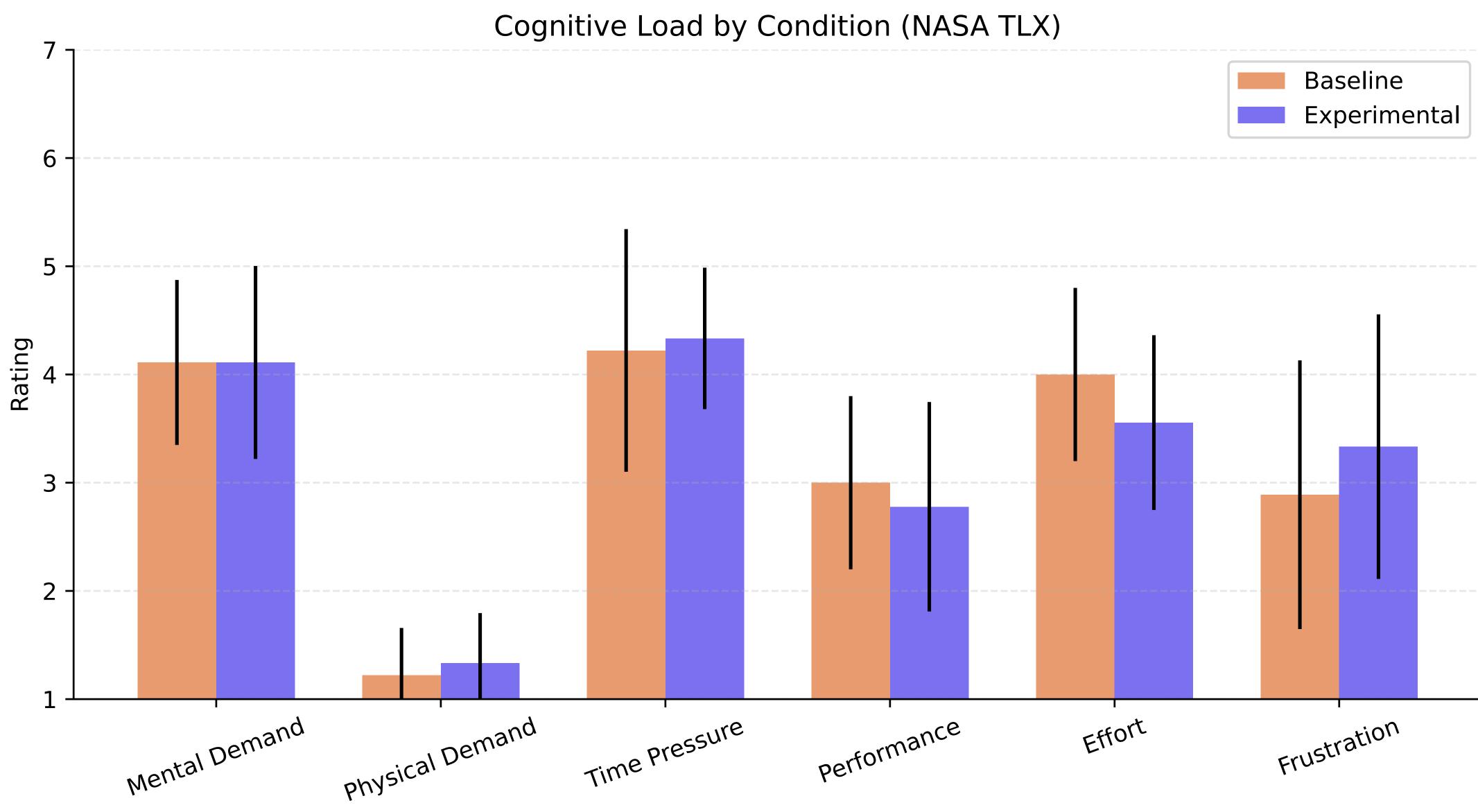
Mean Time to Completion by Distance and Condition



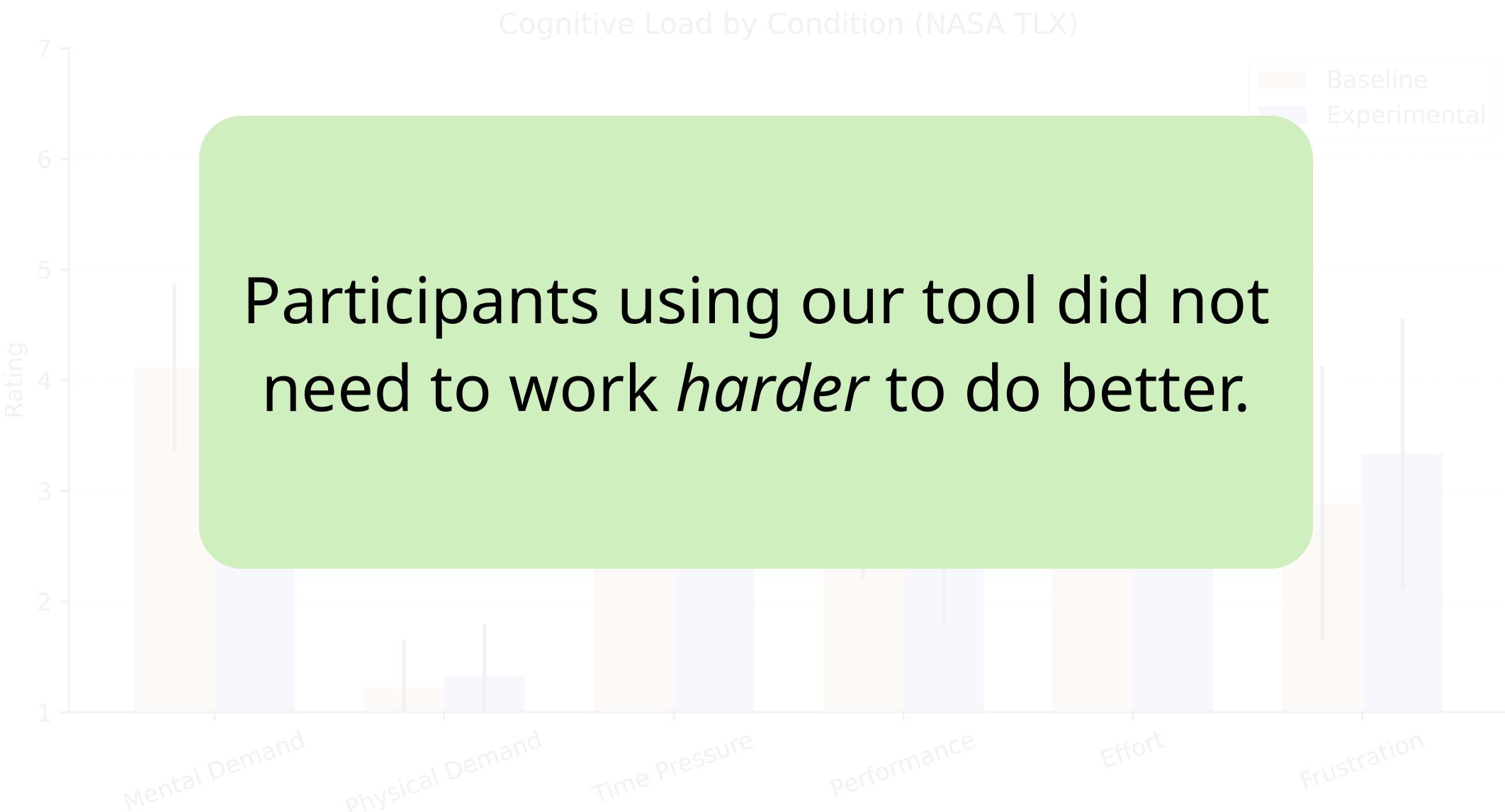
Mean Time to Completion by Distance and Condition



No meaningful difference in cognitive load



No meaningful difference in cognitive load



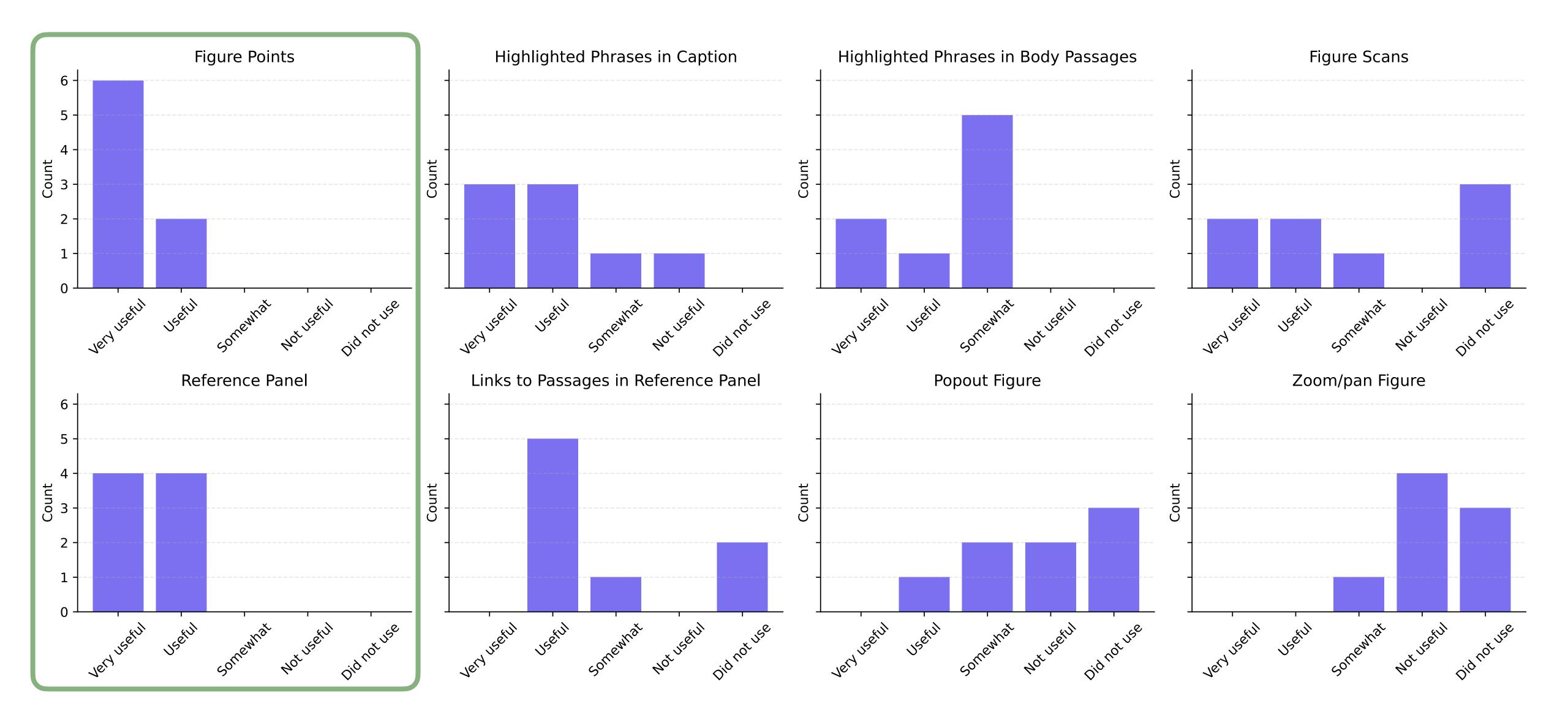
3

Does surfacing these connections measurably improve comprehension?

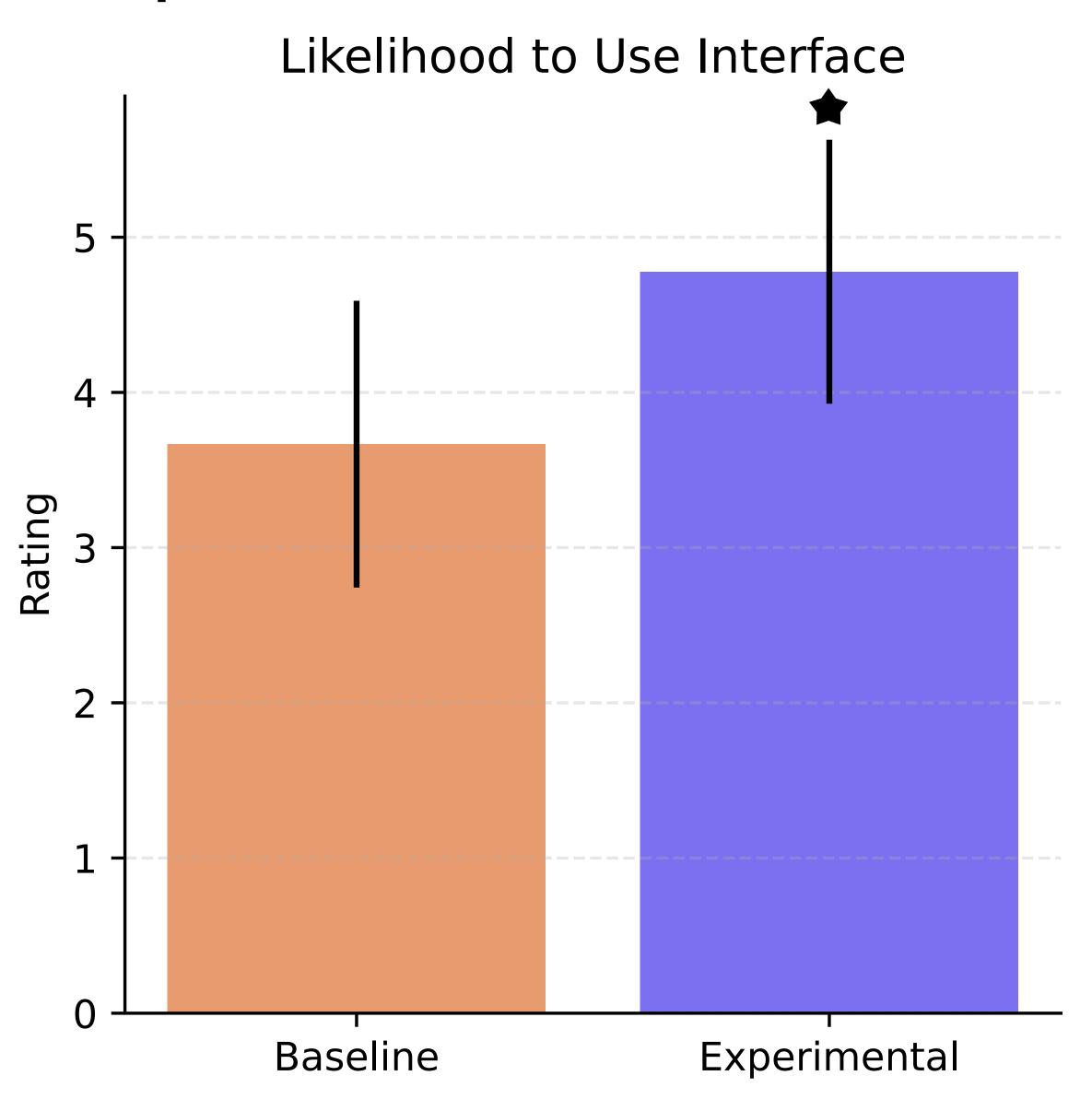
Our framework improved response quality *without* increasing time to completion or cognitive load.

Reinforced by qualitative findings

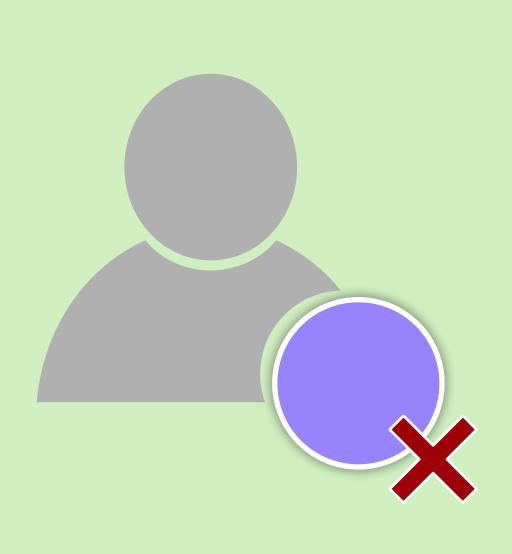
- Reduced navigational burden: reference panel and visual index
- Ease of searching: figure points
- Increased engagement through verification
- Simultaneously developing mental map of information layout



Significant preference for our framework



Future work in fine-grained integration of information

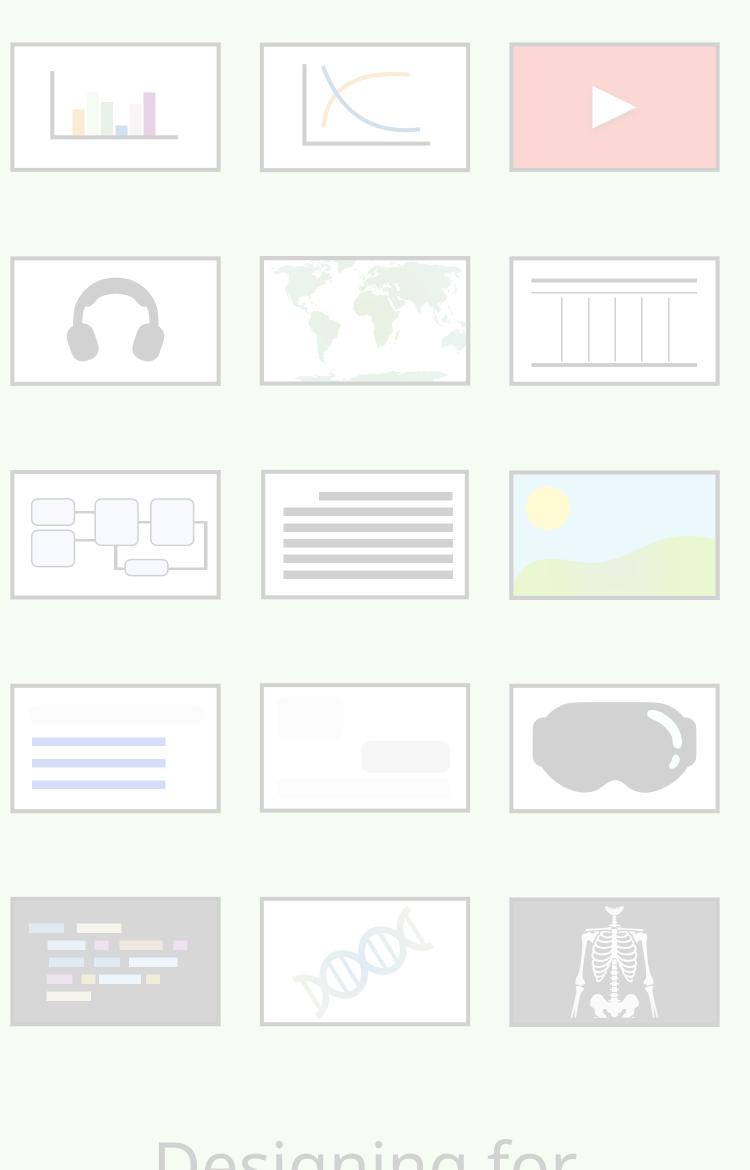


Living with and mitigating AI errors

Living with and mitigating AI errors



different media types



Designing for different media types

Interacting through different modalities

Summary

- 1. Challenges
- 2. Representations
- 3. Improvements

synthesizing scattered details

fine-grained augmentations

quality w/o inc. time or cog. load

Thank you!

Questions?